938 resultados para Dynamic artificial neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a given fiber spun to pre-determined yarn specifications, the spinning performance of the yarn usually varies from mill to mill. For this reason, it is necessary to develop an empirical model that can encompass all known processing variables that exist in different spinning mills, and then generalize this information and be able to accurately predict yarn quality for an individual mill. This paper reports a method for predicting worsted spinning performance with an artificial neural network (ANN) trained with backpropagation. The applicability of artificial neural networks for predicting spinning performance is first evaluated against a well established prediction and benchmarking tool (Sirolan YarnspecTM). The ANN is then subsequently trained with commercial mill data to assess the feasibility of the method as a mill-specific performance prediction tool. Incorporating mill-specific data results in an improved fit to the commercial mill data set, suggesting that the proposed method has the ability to predict the spinning performance of a specific mill accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabric pilling is affected by many interacting factors. This study uses artificial neural networks to model the multi-linear relationships between fiber, yarn and fabric properties and their effect on the pilling propensity of pure wool knitted fabrics. This tool shall enable the user to gauge the expected pilling performance of a fabric from a number of given inputs. It will also provide a means of improving current products by offering alternative material specification and/or selection. In addition to having the capability to predict pilling performance, the model will allow for clarification of major fiber, yarn and fabric attributes affecting fabric pilling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main problems with Artificial Neural Networks (ANNs) is that their results are not intuitively clear. For example, commonly used hidden neurons with sigmoid activation function can approximate any continuous function, including linear functions, but the coefficients (weights) of this approximation are rather meaningless. To address this problem, current paper presents a novel kind of a neural network that uses transfer functions of various complexities in contrast to mono-transfer functions used in sigmoid and hyperbolic tangent networks. The presence of transfer functions of various complexities in a Mixed Transfer Functions Artificial Neural Network (MTFANN) allow easy conversion of the full model into user-friendly equation format (similar to that of linear regression) without any pruning or simplification of the model. At the same time, MTFANN maintains similar generalization ability to mono-transfer function networks in a global optimization context. The performance and knowledge extraction of MTFANN were evaluated on a realistic simulation of the Puma 560 robot arm and compared to sigmoid, hyperbolic tangent, linear and sinusoidal networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the big problems with Artificial Neural Networks (ANN) is that their results are not intuitively clear. For example, if we use the traditional neurons, with a sigmoid activation function, we can approximate any function, including linear functions, but the coefficients (weights) in this approximation will be rather meaningless. To resolve this problem, this paper presents a novel kind of ANN with different transfer functions mixed together. The aim of such a network is to i) obtain a better generalization than current networks ii) to obtain knowledge from the networks without a sophisticated knowledge extraction algorithm iii) to increase the understanding and acceptance of ANNs. Transfer Complexity Ratio is defined to make a sense of the weights associated with the network. The paper begins with a review of the knowledge extraction from ANNs and then presents a Mixed Transfer Function Artificial Neural Network (MTFANN). A MTFANN contains different transfer functions mixed together rather than mono-transfer functions. This mixed presence has helped to obtain high level knowledge and similar generalization comparatively to monotransfer function nets in a global optimization context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the performance of multilayer perceptron (MLP) and multivariate linear regression (MLR) models for predicting the hairiness of worsted-spun wool yarns from various top, yarn and processing parameters. The results indicated that the MLP model predicted yarn hairiness more accurately than the MLR model, and should have wide mill specific applications. On the basis of sensitivity analysis, the factors that affected yarn hairiness significantly included yarn twist, ring size, average fiber length (hauteur), fiber diameter and yarn count, with twist having the greatest impact on yarn hairiness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Though serving as an effective means for damage identification, the capability of an artificial neural network (ANN) for quantitative prediction is substantially dependent on the amount of training data. In virtue of a concept of “Digital Damage Fingerprints” (DDF), a hierarchical approach for the development of training databases was proposed for ANN-based damage identification. With the object of exploiting the capability of ANN to address the key questions: “Is there damage?” and “Where is the damage?”, the amount of training data (damage cases) was increased progressively. Mutuality was established between the quantity of training data and the accuracy of answers to the two questions of interest, and was experimentally validated by identifying the position of actual damage in carbon fibre-reinforced composite laminates. The results demonstrate that such a hierarchical approach is capable of offering prediction as to the presence and location of damage individually, with substantially reduced computational cost and effort in the development of the ANN training database.