988 resultados para Dyes and dyeing - Chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sub-seasonal variability including equatorial waves significantly influence the dehydration and transport processes in the tropical tropopause layer (TTL). This study investigates the wave activity in the TTL in 7 reanalysis data sets (RAs; NCEP1, NCEP2, ERA40, ERA-Interim, JRA25, MERRA, and CFSR) and 4 chemistry climate models (CCMs; CCSRNIES, CMAM, MRI, and WACCM) using the zonal wave number-frequency spectral analysis method with equatorially symmetric-antisymmetric decomposition. Analyses are made for temperature and horizontal winds at 100 hPa in the RAs and CCMs and for outgoing longwave radiation (OLR), which is a proxy for convective activity that generates tropopause-level disturbances, in satellite data and the CCMs. Particular focus is placed on equatorial Kelvin waves, mixed Rossby-gravity (MRG) waves, and the Madden-Julian Oscillation (MJO). The wave activity is defined as the variance, i.e., the power spectral density integrated in a particular zonal wave number-frequency region. It is found that the TTL wave activities show significant difference among the RAs, ranging from ∼0.7 (for NCEP1 and NCEP2) to ∼1.4 (for ERA-Interim, MERRA, and CFSR) with respect to the averages from the RAs. The TTL activities in the CCMs lie generally within the range of those in the RAs, with a few exceptions. However, the spectral features in OLR for all the CCMs are very different from those in the observations, and the OLR wave activities are too low for CCSRNIES, CMAM, and MRI. It is concluded that the broad range of wave activity found in the different RAs decreases our confidence in their validity and in particular their value for validation of CCM performance in the TTL, thereby limiting our quantitative understanding of the dehydration and transport processes in the TTL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (−20 °C) or refrigerated (4 °C). Portions of skeletal muscle tissue (∼1.5 g) were interred in microcosms (72 mm diameter × 120 mm height) containing sieved (2 mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a significant impact on the microbial activity (carbon dioxide respiration) and chemistry of the surrounding soil including: pH, electroconductivity, ammonium, nitrate, phosphate and potassium. This is the first laboratory controlled study to measure changes in inorganic chemistry in soil associated with the decomposition of skeletal muscle tissue in combination with microbial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the effects of bleaching of alpaca tops and dyeing of bleached alpaca tops/yarns on the quality of tops and yarns. A dark brown alpaca top was bleached with hydrogen peroxide. Two bleaching methods were tried for effectiveness of color removal. A portion of each bleached top was dyed after bleaching. Color parameters were examined for unbleached, bleached and bleached/dyed tops, these tops were then converted into yarns of different twist levels and counts using a worsted spinning system. Some of the bleached yarn from each bleaching method was dyed in a package dye vat to compare the difference of top dyeing versus yarn package dyeing on yarn quality. Fiber diameter, yarn strength, yarn evenness, yarn hairiness and fiber degradation were tested to examine the effects of bleaching and dyeing on these properties at top and yarn stages. A processing route for bleaching and dyeing alpaca fiber was recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photolytic phenanthrene-based precursors for both β-methoxycarbene and β-ethoxycarbene were synthesized with and without a deuterium label attached to the a carbon. The incorporation of this deuterium label allowed distinction between a 1, 2-H shift and a 1, 2-O shift pathway to the respective alkyl vinyl ether, without the influence of a primary kinetic isotope effect. Photolyses of these precursors gave rearrangement products of the expected β-alkoxycarbenes. In the case of β-methoxycarbene, no methyl vinyl ether was observed due to its volatility. However, the appearance of aldehyde peaks in the NMR spectra, from an apparent further rearrangement to acetaldehyde through an enol intermediate, indicated that a 1,2-H shift had occurred. Ethyl vinyl ether was isolated following the photolysis of the β-ethoxycarbene precursor. Quantification of the two pathways showed less than 2% undergoing an ethoxy shift to the ethyl vinyl ether. Yield experiments on this photolysis demonstrated a maximum yield of β-ethoxycarbene as 43%, though this decreased as the experiment continued. Computational work on the β-ethoxycarbene system indicates that the triplet scate is more stable than the singlet. In addition, the activation energy to the 1.2-H shift pathway is remarkably low and is clearly consistent with the observed overwhelming preference for this pathway in the experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of tris(2,2’-bipyridyl)ruthenium(III) (Ru(bipy) 33+) with various analytes to generate chemiluminescence has been well documented. This investigation sought to undertake a chemiluminometic study of the reactions of Ru(bipy) 33+ with selected Papaver Somniferum alkaloids and specifically synthesised phenethylamines. The investigation, based on a kinetic study, primarily addressed the effect of varying reaction conditions (pH) on Ru(bipy) 33+ chemiluminescence production. To monitor these reactions, a batch chemiluminometer was specifically designed, fabricated and automated to conduct an extensive study on the selected compounds of interest. The instrumentation incorporated a custom built reaction cell and comprised an ‘on-line’ sample preparation system with which calibration standards could be automatically prepared. The instrumentation provided both time-independent (peak area) and time-dependent (kinetic profile) information. A novel approach to the stabilisation of Ru(bipy) 33+ as a chemiluminescencent reagent was also investigated and a recirculating system was employed with the batch chemiluminometer to provide a stable supply of Ru(bipy) 33+. Codeine, thebaine and 6-methoxy-codeine were the Papaver Somniferum alkaloids selected for this study and several N-methylated and N,N-dimethylated phenethylamines and methoxy-substituted phenetheylamines were also synthesised to investigate the affect of pH on the chemiluminescence emission efficiency. The versatility of the batch chemiluminometer facilitated the kinetic study of numerous analytes over a broad pH range. The exemplary performance of the chemiluminometer as an analytical instrument, was demonstrated by the calibration functions, based on peak area data, which exhibited excellent linearity and sensitivity. The estimated detection limits (3s) for the selected alkaloids were in the range 2 x 10-9 M to 7 x 10-9 at pH 5.0 and above, which compared favourably to detection limits for the same compounds determined using FIA. Relative standard deviations (n=5) for peak areas ranged between 1% to 5% with a mean of 3.1% for all calibration standards above 2.5 x 10-8 M. Correlation between concentration and peak area, irrespective of pH and analyte was excellent, with all but two calibration functions having r-squared values greater than 0.990. The analytical figures of merit exemplified the precision and robustness of the reagent delivery and ‘on-line’ sample preparation, as well as the sensitivity of the system. The employment of the chemiluminometer for the measurement of total chemiluminescence emission (peak area) was in itself a feasible analytical technique, which generated highly reproducible and consistent data. Excellent analytical figures of merit, based on peak area, were similarly achieved for the phenethylamines. The effects of analyte structure on chemiluminescence activity was also investigated for the alkaloids and the phenethylamines. Subtle structural variations between the three alkaloids resulted in either a moderately reduced or enhanced total emission that was two or three fold difference only. A significant difference in reaction kinetics was observed between thebaine and codeine/6-methoxy-codeine, which was dependent upon pH. The time-dependent data, namely the observed rate constants for the initial rise in intensity and for the subsequent decay rate, were obtained by fitting a mathematical function (based on the postulated reaction mechanism) to the raw data. The determination of these rate constants for chemiluminescence reactions highlighted the feasibility for utilising such measurements for quantitative analytical applications. The kinetic data were used to discriminate between analyte responses in order to determine the concentrations of individual analytes in a binary mixture. A preliminary, multi-component investigation performed on a binary mixture of codeine and 6-methoxy-codeine (1:1) successfully determined the concentrations of these individual components using such rate constant measurements. Consequently, variations in kinetics resulted in a significant difference between the relative chemiluminescence response based on peak area measurements and the relative response base on peak height measurements obtained using FIA. With regards to the observed reactivity of secondary amines and tertiary amines, chemiluminescence peak area determinations confirmed the vital role of pH on reaction efficiency, which was governed by structural features and kinetics. The tertiary amines investigated generally produced a greater emission under acidic conditions than the corresponding secondary amines. However, the measured chemiluminescence responses were highly dependent upon pH, with similar peak areas obtained for both amine groups under slightly alkaline conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonics has the potential to reduce the cost and environmental impact of textile processing. This work investigates the effects of utrasonic irradiation during wool scouring on fibre surface properties and fibre dyeing rate. A range of ultrasonic frequencies were used in the scouring bath to examine the forms of fibre cuticle damage. It was shown that ultrasonically scoured wool underwent some modifications of the fibre surface structure which resulted in a higher rate of dye uptake by the fibres, when compared with the conventionally scoured wool. The lower the ultrasonic frequency the more sever was the cuticle damage to wool during scouring, hence the higher the fibre dye uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 In the Australian National Curriculum, the science understanding of overarching ideas of matter and energy covers science topics in the conceptual area of chemistry, such as the properties, forms and uses of different materials, the states of matter (solid, liquid and gas), and energy, such as forces, movement and electricity. This chapter focusses on explaining the abstract science ideas related to matter and energy through the use of appropriate vocabulary, examining ways of organising knowledge and linking scientific models and theories to observations and experiences. The particle model of matter is used to explain common observations, demonstrating the value of scientific inquiry and the role of models and representations in scientific thinking. A directed inquiry teaching approach in which there is a focus on the use of representations is recommended for these abstract topics. Representations are a vital component of communicating the abstract ideas of matter and energy. The use of the pedagogical approach in which students construct and evaluate representations of scientific ideas is used in the negotiation and development of their understandings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.