948 resultados para Dust-to-gas mass ratios


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E01-011 experiment at Jefferson Laboratory (JLab) studied light-to-medium mass Λ hypernuclei via the AZ + e → [special characters omitted] + e' + K+ electroproduction reaction. Precise measurement of hypernuclear ground state masses and excitation energies provides information about the nature of hyperon-nucleon interactions. Until recently, hypernuclei were studied at accelerator facilities with intense π+ and K- meson beams. The poor quality of these beams limited the resolution of the hypernuclear excitation energy spectra to about 1.5 MeV (FWHM). This resolution is not sufficient for resolving the rich structure observed in the excitation spectra. By using a high quality electron beam and employing a new high resolution spectrometer system, this study aims to improve the resolution to a few hundred keV with an absolute precision of about 100 keV for excitation energies. In this work the high-resolution excitation spectra of [special characters omitted], and [special characters omitted] hypernuclei are presented. In an attempt to emphasize the presence of the core-excited states we introduced a novel likelihood approach to particle identification (PID) to serve as an alternative to the commonly used standard hard-cut PID. The new method resulted in almost identical missing mass spectra as obtained by the standard approach. An energy resolution of approximately 400–500 keV (FWHM) has been achieved, an unprecedented value in hypernuclear reaction spectroscopy. For [special characters omitted] the core-excited configuration has been clearly observed with significant statistics. The embedded Λ hyperon increases the excitation energies of the 11B nuclear core by 0.5–1 MeV. The [special characters omitted] spectrum has been observed with significant statistics for the first time. The ground state is bound deeper by roughly 400 keV than currently predicted by theory. Indication for the core-excited doublet, which is unbound in the core itself, is observed. The measurement of [special characters omitted] provides the first study of a d-shell hypernucleus with sub-MeV resolution. Discrepancies of up to 2 MeV between measured and theoretically predicted binding energies are found. Similar disagreement exists when comparing to the [special characters omitted] mirror hypernucleus. Also the core-excited structure observed between the major s-, p- and d-shell Λ orbits is not consistent with the available theoretical calculations. In conclusion, the discrepancies found in this study will provide valuable input for the further development of theoretical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine the risk of mortality associated with and quantify the deaths attributable to combinations of body mass index (BMI) and waist circumference (WC). METHODS: This study included 41,439 participants. For the hazard ratio (HR) calculation, adiposity categories were defined as: BMI(N) /WC(N) , BMI(N) /WC(O) , BMI(O) /WC(N) , and BMI(O) /WC(O) (N = non-obese, O = obese). For the population attributable fraction analysis, obesity was classified as: (i) obese by BMI and/or WC; (ii) obese by BMI; and (iii) obese by WC. Mortality data was complete to the end of 2012. RESULTS: The prevalence of BMI(N) /WC(N) , BMI(N) /WC(O) , BMI(O) /WC(N) , and BMI(O) /WC(O) was 73%, 6%, 6%, and 15%, respectively. There was an increased risk of all-cause and cardiovascular disease (CVD) mortality in those with BMI(N) /WC(O) (HR (95% CI) 1.2 (1.2, 1.3) and 1.3 (1.1, 1.6)) and BMI(O) /WC(O) (1.3 (1.3, 1.4) and 1.7 (1.5, 1.9)) compared to those with BMI(N) /WC(N) . The estimated proportion of all-cause and CVD mortality attributable to obesity defined using WC or using BMI and/or WC was higher compared to obesity defined using BMI. CONCLUSIONS: Current population obesity monitoring misses those with BMI(N) /WC(O) who are at increased risk of mortality. By targeting reductions in population WC, the potential exists to prevent more deaths in the population than if we continue to target reductions in BMI alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and UV irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains are numerically computed by solving the coagulation equation for settling dust particles, with the result that the mass and total surface area of dust grains per unit volume of the gas in the disks are very small, except at the midplane. The H2 level populations and line emission are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk and in the surface layer, while the UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-rayinduced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the dust properties. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient. This makes the level populations change from LTE to non-LTE distributions, which results in changes to the line ratios. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent availability of multi-wavelength data revealed the presence of large reservoirs of warm and cold gas and dust in the innermost regions of the majority of massive elliptical galaxies. To prove an internal origin of cold and warm gas, the investigation of the spatially distributed cooling process which occurs because of non-linear density perturbations and subsequent thermal instabilities is of crucial importance. The first goal of this work of thesis is to investigate the internal origin of warm and cold phases. Numerical simulations are the powerful tool of analysis. The way in which a spatially distributed cooling process originates has been examined and the off-centre amount of gas mass which cools when different and differently characterized AGN feedback mechanisms operate has been quantified. This thesis demonstrates that the aforementioned non-linear density perturbations originate and develop from AGN feedback mechanisms in a natural fashion. An internal origin of the warm phase from the once hot gas is shown to be possible. Computed velocity dispersions of ionized and hot gas are similar. The cold gas as well can originate from the cooling process: indeed, it has been estimated that the surrounding stellar radiation, which is one of the most feasible sources of ionization of the warm gas, does not manage to keep ionized all the gas at 10^4 K. Therefore, cooled gas does undergo a further cooling which can lead the warm phase to lower temperatures. However, the gas which has cooled from the hot phase is expected to be dustless; nonetheless, a large fraction of early type galaxies has detectable dust in their cores, both concentrated in filamentary and disky structures and spread over larger regions. Therefore a regularly rotating disk of cold and dusty gas has been included in the simulations. A new quantitative investigation of the spatially distributed cooling process has therefore been essential: the contribution of the included amount of dust which is embedded in the cold gas does have a role in promoting and enhancing the cooling. The fate of dust which was at first embedded in cold gas has been investigated. The role of AGN feedback mechanisms in dragging (if able) cold and dusty gas from the core of massive ellipticals up to large radii has been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To analytically validate a gas concentration of chromatography-mass spectrometry (GC-MS) method for measurement of 6 amino acids in canine serum samples and to assess the stability of each amino acid after sample storage. SAMPLES Surplus serum from 80 canine samples submitted to the Gastrointestinal Laboratory at Texas A&M University and serum samples from 12 healthy dogs. PROCEDURES GC-MS was validated to determine precision, reproducibility, limit of detection, and percentage recovery of known added concentrations of 6 amino acids in surplus serum samples. Amino acid concentrations in serum samples from healthy dogs were measured before (baseline) and after storage in various conditions. RESULTS Intra- and interassay coefficients of variation (10 replicates involving 12 pooled serum samples) were 13.4% and 16.6% for glycine, 9.3% and 12.4% for glutamic acid, 5.1% and 6.3% for methionine, 14.0% and 15.1% for tryptophan, 6.2% and 11.0% for tyrosine, and 7.4% and 12.4% for lysine, respectively. Observed-to-expected concentration ratios in dilutional parallelism tests (6 replicates involving 6 pooled serum samples) were 79.5% to 111.5% for glycine, 80.9% to 123.0% for glutamic acid, 77.8% to 111.0% for methionine, 85.2% to 98.0% for tryptophan, 79.4% to 115.0% for tyrosine, and 79.4% to 110.0% for lysine. No amino acid concentration changed significantly from baseline after serum sample storage at -80°C for ≤ 7 days. CONCLUSIONS AND CLINICAL RELEVANCE GC-MS measurement of concentration of 6 amino acids in canine serum samples yielded precise, accurate, and reproducible results. Sample storage at -80°C for 1 week had no effect on GC-MS results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 +/- 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments at the southern summit of Hydrate Ridge display two distinct modes of gas hydrate occurrence. The dominant mode is associated with active venting of gas exsolved from the accretionary prism and leads to high concentrations (15%-40% of pore space) of gas hydrate in seafloor or near-surface sediments at and around the topographic summit of southern Hydrate Ridge. These near-surface gas hydrates are mainly composed of previously buried microbial methane but also contain a significant (10%-15%) component of thermogenic hydrocarbons and are overprinted with microbial methane currently being generated in shallow sediments. Focused migration pathways with high gas saturation (>65%) abutting the base of gas hydrate stability create phase equilibrium conditions that permit the flow of a gas phase through the gas hydrate stability zone. Gas seepage at the summit supports rapid growth of gas hydrates and vigorous anaerobic methane oxidation. The other mode of gas hydrate occurs in slope basins and on the saddle north of the southern summit and consists of lower average concentrations (0.5%-5%) at greater depths (30-200 meters below seafloor [mbsf]) resulting from the buildup of in situ-generated dissolved microbial methane that reaches saturation levels with respect to gas hydrate stability at 30-50 mbsf. Net rates of sulfate reduction in the slope basin and ridge saddle sites estimated from curve fitting of concentration gradients are 2-4 mmol/m**3/yr, and integrated net rates are 20-50 mmol/m**2/yr. Modeled microbial methane production rates are initially 1.5 mmol/m**3/yr in sediments just beneath the sulfate reduction zone but rapidly decrease to rates of <0.1 mmol/m**3/yr at depths >100 mbsf. Integrated net rates of methane production in sediments away from the southern summit of Hydrate Ridge are 25-80 mmol/m**2/yr. Anaerobic methane oxidation is minor or absent in cored sediments away from the summit of southern Hydrate Ridge. Ethane-enriched Structure I gas hydrate solids are buried more rapidly than ethane-depleted dissolved gas in the pore water because of advection from compaction. With subsidence beneath the gas hydrate stability zone, the ethane (mainly of low-temperature thermogenic origin) is released back to the dissolved gas-free gas phases and produces a discontinuous decrease in the C1/C2 vs. depth trend. These ethane fractionation effects may be useful to recognize and estimate levels of gas hydrate occurrence in marine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In preparation for the Russian Luna-Resurs mission we combined our compact time-of-flight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Coupled measurements with both instruments were successfully performed with the prototype of the mass spectrometer and a flight-like gas chromatograph. The system was tested with two test gas mixtures, a mixture of hydrocarbons and a mixture of noble gases. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 10(6) within 1 s, the TOF-MS system is a valuable extension of the GC analytical system. Based on the measurements with calibration gases performed with the combined GC-MS prototype and under assumption of mean characteristics for the Moon's regolith, the detection limit for volatile species in a soil sample is estimated to 2.10(-10) by mass for hydrocarbons and 2.10(-9) by mass for noble gases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the analysis of the lunar rocks and soil samples, brought to Earth by the Apollo missions, it is believed that the Moon has a waterless nature and also other volatile species are strongly depleted. Advancement in analysis techniques helped to identify water and other volatile species in lunar volcanic glasses. Additionally, recent lunar space missions detected water and volatile organic compounds in the region of the lunar poles where permanently shadowed craters are existing. All known lunar soil samples available on Earth come from the lunar near side, close to the equator. To verify the most recent measurement results and to enhance the knowledge of the geological history of the Moon it is of high interest to perform in situ measurements on the lunar poles. For this reason the Russian space agency, Roskosmos, developed aprogram for the scientific exploration of the lunar poles. The Gas Analysis Package (GAP) is part of the selected scientific payload aboard the Luna-Resurs Lander. This instrument uses pyrolytic cells and will apply laser spectroscopy, gas chromatography and mass spectrometry to detect and analyze volatile components trapped in the lunar soil. An existing ion optical design of a compact reflectron type time-of-flight mass spectrometer, originally built for the MEAP/P-BACE balloon mission, was chosen as a part of the GAP instrument. The scope of this thesis is the development of the interface between gas chromatography (GC) and this Neutral Gas Mass Spectrometer (NGMS) to perform coupled GC-MS measurements. In the first part of this thesis the interfacing concept was developed and verified by coupling the NGMS prototype to gas chromatography. The second part of this thesis is devoted to the development of the NGMS flight version.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using hydrodynamic simulations, we study the mass-loss due to supernova-driven outflows from Milky Way type disc galaxies, paying particular attention to the effect of the extended hot halo gas. We find that the total mass-loss at inner radii scales roughly linearly with total mass of stars formed, and that the mass loading factor at the virial radius can be several times its value at inner radii because of the swept up hot halo gas. The temperature distribution of the outflowing material in the inner region (similar to 10 kpc) is bimodal in nature, peaking at 10(5) K and 10(6.5) K, responsible for optical and X-ray emission, respectively. The contribution of cold/warm gas with temperature <= 10(5.5) K to the outflow rate within 10 kpc is approximate to 0.3-0.5. The warm mass loading factor, eta(3e5) (T <= 3 x 10(5) K) is related to the mass loading factor at the virial radius (eta(v)) as eta(v) approximate to 25 eta(3e5) (SFR/M-circle dot yr(-1))(-0.15) for a baryon fraction of 0.1 and a starburst period of 50 Myr. We also discuss the effect of multiple bursts that are separated by both short and long periods. The outflow speed at the virial radius is close to the sound speed in the hot halo, less than or similar to 200 km s(-1). We identify two `sequences' of outflowing cold gas at small scales: a fast (approximate to 500 km s(-1)) sequence, driven by the unshocked free-wind; and a slow sequence (approximate to +/- 100 km s(-1)) at the conical interface of the superwind and the hot halo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A macro matrix solid-phase dispersion (MSPD) method was developed to extract 266 pesticides from apple juice samples prior to gas chromatography-mass selective detection (GC-MSD) determination. A 10 g samples was mixed with 20 g diatomaceous earth. The mixture was transferred into a glass column. Pesticide residues were leached with a 160 mL hexane-dichloromethane (1:1) at 5 mL/min. Two hundred and sixty-six pesticides were divided into three groups and detected by GC-MSD under selective ion monitoring. The proposed method takes advantage of both liquid-liquid extraction and conventional MSPD methods. Application was illustrated by the analysis of 236 apple juice samples produced in Shaanxi province China mainland this year. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gas chromatographic/mass spectrometric method is described for the detection of clenbuterol residues in liver, muscle, urine and retina. Tissue samples are first digested using protease and any clenbuterol present is extracted using a simple liquid/liquid extraction procedure. The dried extracts are then derivatized using methylboronic acid and the derivatives are subjected to gas chromatography/mass spectrometry on a magnetic sector instrument. The detection limit of the assay is 0.05 ng g-1 clenbuterol in liver, muscle or urine using a 10 g sample size, and 4 ng g-1 in retina using a 0.5 g sample size. The assay is made very specific by using selected ion monitoring of three ions at a resolution of 3500 and by ion ratio measurements. The precision and reproducibility of the assay are enhanced by the use of a deuterated internal standard, with a typical coefficient of variation of 3%.