992 resultados para Dual-Processs Systems
Resumo:
Noradrenaline (NOR) is a neurotransmitter presenl in the central nervous system which is related to the control of ingestive behavior of food and fluids. We describe here the relationship between NOR and intake of water and NaCl solution, fluids that are essential for a normal body fluid electrolytic balance. Central NOR has an inhibitory effect on fluid intake, but it either induces or not alterations in food intake. Several ways of inducing water intake, such as water deprivation, meal-associated water intake, administration of angiotensinergic, cholinergic or beta-adrenergic agonists, or administration of hyperosmotic solutions, are inhibited by alpha-adrenergic agonists. Need-induced sodium intake by sodium-depleted animals is also inhibited by alpha-adrenergic agonists. NOR can also facilitate fluid intake. Water intake is elicited by NOR and the integrity of central noradrenergic systems is necessary for a normal expression of water or salt intake in dehydrated animals. The angiotensinergic component of either behavior apparently depends on a central noradrenergic system. NOR probably facililates fluid intake by acting on postsynaptic receptors, but we do not know how it inhibits fluid infake. The inhibitory and facilitatory effects of NOR on ingestive behavior suggest a dual role for this neurotransmitter in the control of hydromineral fluid intake.
Resumo:
We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained systems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac brackets and the correspondent Maxwell electromagnetic theory limit. ©1999 The American Physical Society.
Resumo:
The Predispatch model (PD) calculates a short-term generation policy for power systems. In this work a PD model is proposed that improves two modeling aspects generally neglected in the literature: voltage/reactive power constraints and ramp rate constraints for generating units. Reactive power constraints turn the PD into a non-linear problem and the ramp rate constraints couple the problem dynamically in time domain. The solution of the PD is turned into a harder task when such constraints are introduced. The dual decomposition/ lagrangian relaxation technique is used in the solution approach for handing dynamic constraints. As a result the PD is decomposed into a series of independent Optimal Power Flow (FPO) sub problems, in which the reactive power is represented in detail. The solution of the independent FPO is coordinated by means of Lagrange multipliers, so that dynamic constraints are iteratively satisfied. Comparisons between dispatch policies calculated with and without the representation of ramp rate constraints are performed, using the IEEE 30 bus test system. The results point-out the importance of representing such constraints in the generation dispatch policy. © 2004 IEEE.
Resumo:
Purpose: To evaluate the pullout strength of a glass fiber-reinforced composite post (glass FRC) cemented with three different adhesive systems and one resin cement. The null hypothesis was that pullout strengths yielded by the adhesive systems are similar. Materials and Methods: Thirty bovine teeth were selected. The size of the specimens was standardized at 16 mm by sectioning off the coronal portion and part of the root. The specimens were divided into three groups, according to the adhesive system, which were applied following the manufacturers' instructions: G1, ScotchBond Multi-Purpose Plus; G2, Single Bond; G3, Tyrian SPE/One-Step Plus. The glass FRCs (Reforpost) were etched with 37% H3PO4 for 1 min and silanized (Porcelain Primer). Thereafter, they were cemented with the dual resin cement En-Force. The specimens were stored for 24 h, attached to an adapted device, and submitted to the pullout test in a universal testing machine (1 mm/min). The data were submitted to the one-way ANOVA and Tukey's test (α = 0.05). Results: G1 (30.2 ± 5.8 Kgf) displayed the highest pullout strength (p < 0.001) when compared to G2 (18.6 ± 5.8 Kgf) and G3 (14.3 ± 5.8 Kgf), which were statistically similar. Analysis of the specimens revealed that all failures occurred between the adhesive system and the root dentin (pullout of the post cement), regardless of group. Conclusion: The multiple-bottle, total-etch adhesive system provided higher pullout strength of the glass FRC when compared to the single-bottle, total-etch, and single-step self-etching adhesive systems. The null hypothesis was rejected (p < 0.001).
Resumo:
Aim: In this study, we evaluated the effect of photopolymerization on Vickers microhardness of dual-polymerized resin cement at three locations when a translucent quartz fiber post was used. Materials and Methods: Single-rooted bovine teeth received quartz fiber post systems (length: 12 mm) using a dual-polymerized resin cement. In Group 1, the posts were cemented but not photopolymerized, and in Group 2, the posts were both cemented and photopolymerized. After cementation, approximately 1.5-mm thick sections were obtained (two cervical, two middle, and two apical) for regional microhardness evaluations. Statistical Analysis: Statistical analyses were performed using the SPSS software (ver. 11.0 for Windows; SPSS, Inc., Chicago, IL, USA). Microhardness (kg/mm 2 ) data were submitted to two-way analysis of variance (two-way ANOVA) and repeated measures with microhardness values as the dependent variable and polymerization status (two levels: with and without) and root region (three levels: cervical, middle, and apical) as independent variables. Multiple comparisons were made using Dunnett's T3 post-hoc test. P values of <0.05 were considered to indicate statistical significance in all tests. Results: Photopolymerization did not significantly change the microhardness values when compared with no photopolymerization. Microhardness values also showed no significant difference between the three regions in the root canals in both groups. Conclusions: The mode of polymerization of the cement tested in combination with the translucent quartz fiber post system did not affect the microhardness of the cement at the cervical, middle, or apical regions of the root.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
This paper proposes a technique for solving the multiobjective environmental/economic dispatch problem using the weighted sum and ε-constraint strategies, which transform the problem into a set of single-objective problems. In the first strategy, the objective function is a weighted sum of the environmental and economic objective functions. The second strategy considers one of the objective functions: in this case, the environmental function, as a problem constraint, bounded above by a constant. A specific predictor-corrector primal-dual interior point method which uses the modified log barrier is proposed for solving the set of single-objective problems generated by such strategies. The purpose of the modified barrier approach is to solve the problem with relaxation of its original feasible region, enabling the method to be initialized with unfeasible points. The tests involving the proposed solution technique indicate i) the efficiency of the proposed method with respect to the initialization with unfeasible points, and ii) its ability to find a set of efficient solutions for the multiobjective environmental/economic dispatch problem.
Resumo:
This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Objective: We investigated the relation between duration of dual antiplatelet therapy (DAPT) and clinical outcomes up to 12 months after Genous (TM) endothelial progenitor cell capturing R stent (TM) placement in patients from the e-HEALING registry. Background: Cessation of (DAPT) has been shown to be associated with the occurrence of stent thrombosis (ST). After Genous placement, 1 month of DAPT is recommended. Methods: Patients were analyzed according to continuation or discontinuation of DAPT at a 30-day and 6-month landmark, excluding patients with events before the landmark. Each landmark was a new baseline, and outcomes were followed up to 12 months after stenting. The main outcome for our current analysis was target vessel failure (TVF), defined as target vessel-related cardiac death or myocardial infarction and target vessel revascularization. Secondary outcomes included ST. (Un)adjusted hazard ratios (HR) for TVF were calculated with Cox regression. Results: No difference was observed in the incidence of TVF [HR: 1.03; 95% confidence intervals (CI): 0.651.65, P = 0.89] in patients continuing DAPT (n = 4,249) at 30 days versus patients stopped (n = 309), and HR: 0.82 (95% CI: 0.551.23, P = 0.34) in patients continuing DAPT (n = 2,654) at 6 months versus patients stopped [n = 1,408] DAPT). Furthermore, no differences were observed in ST. Even after addition of identified independent predictors for TVF, adjusted TVF hazards were comparable. Conclusions: In a post-hoc analysis of e-HEALING, duration of DAPT was not associated with the occurrence of the outcomes TVF or ST. The Genous stent may be an attractive treatment especially in patients at increased risk for (temporary) cessation of DAPT or bleeding. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Objective: To determine the E. faecalis biofilm formation on the surface of five adhesive systems (AS) and its relationship with roughness. Study Design: The formation of E. faecalis biofilms was tested on the surface of four dual-cure AS: AdheSE DC, Clearfil DC Bond, Futurabond DC and Excite DSC and one light-cure antimicrobial AS, Clearfil Protect Bond, after 24 hours of incubation, using the MBEC high-throughput device. Results: E. faecalis biofilms grew on all the adhesives. The least growth of biofilm was on Excite DSC, Clearfil Protect Bond, and the control. Futurabond DC resulted in the greatest roughness and biofilm amount. There was a close relationship between the quantity of biofilm and roughness, except for Clearfil Protect Bond, which showed little biofilm but high roughness. Conclusion: None of the tested AS prevented E. faecalis biofilm formation, although the least quantity was found on the surface of Clearfil Protect Bond.
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the five-year clinical performance of ceramic inlays and onlays made with two systems: sintered Duceram (Dentsply-Degussa) and pressable IPS Empress (Ivoclar Vivadent). Eighty-six restorations were placed by a single operator in 35 patients with a median age of 33 years. The restorations were cemented with dual-cured resin cement (Variolink II, Ivoclar Vivadent) and Syntac Classic adhesive under rubber dam. The evaluations were conducted by two independent investigators at baseline, and at one, two, three, and five years using the modified United States Public Health Service (USPHS) criteria. At the five-year recall, 26 patients were evaluated (74.28%), totalling 62 (72.09%) restorations. Four IPS restorations were fractured, two restorations presented secondary caries (one from IPS and one from Duceram), and two restorations showed unacceptable defects at the restoration margin and needed replacement (one restoration from each ceramic system). A general success rate of 87% was recorded. The Fisher exact test revealed no significant difference between Duceram and IPS Empress ceramic systems for all aspects evaluated at different recall appointments (p>0.05). The McNemar chi-square test showed significant differences in relation to marginal discoloration, marginal integrity, and surface texture between the baseline and five-year recall for both systems (p<0.001), with an increased percentage of Bravo scores. However, few Charlie or Delta scores were attributed to these restorations. In conclusion, these two types of ceramic materials demonstrated acceptable clinical performance after five years
Resumo:
This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.