907 resultados para Drying apparatus
Resumo:
Fluidised bed-heat pump drying technology offers distinctive advantages over the existing drying technology employed in the Australian food industry. However, as is the case with many other examples of innovations that have had clear relative advantages, the rates of adoption and diffusion of this technology have been very slow. "Why does this happen?" is the theme of this research study that has been undertaken with an objective to analyse a range of issues related to the market acceptance of technological innovations. The research methodology included the development of an integrated conceptual model based on an extensive review of literature in the areas of innovation diffusion, technology transfer and industrial marketing. Three major determinants associated with the market acceptance of innovations were identified as the characteristics of the innovation, adopter information processing capability and the influence of the innovation supplier on the adoption process. This was followed by a study involving more than 30 small and medium enterprises identified as potential adopters of fluidised bed-heat pump drying technology in the Australian food industry. The findings revealed that judgment was the key evaluation strategy employed by potential adopters in the particular industry sector. Further, it was evidenced that the innovations were evaluated against a predetermined criteria covering a range of aspects with emphasis on a selected set of attributes of the innovation. Implication of these findings on the commercialisation of fluidised bed-heat pump drying technology was established, and a series of recommendations was made to the innovation supplier (DPI/FT) enabling it to develop an effective commercialisation strategy.
Resumo:
An apparatus is described that facilitates the determination of incorporation levels of isotope labelled, gaseous precursors into volatile insect-derived metabolites. Atmospheres of varying gas compositions can be generated by evacuation of a working chamber followed by admission of the required levels of component gases, using a precision, digitised pressure read-out system. Insects such as fruit-flies are located initially in a small introduction chamber, from which migration can occur downwards into the working chamber. The level of incorporation of labelled precursors is continuously assayed by the Solid Phase Micro Extraction (SPME) technique and GC-MS analyses. Experiments with both Bactrocera species (fruit-flies) and a parasitoid wasp, Megarhyssa nortoni nortoni (Cresson) and oxygen-18 labelled dioxygen illustrate the utility of this system. The isotope effects of oxygen-18 on the carbon-13 NMR spectra of 1,7- dioxaspiro[5,5]undecane are also described.
Resumo:
A modified conventional direct shear device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying and wetting paths of soil water characteristic curves (SWCCs). The results revealed that the internal friction angle of the soils was not significantly affected by either the suction or the drying wetting SWCCs. The apparent cohesion of soil increased with a decreasing rate as suction increased. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as suction increased. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behavior than that of soil in drying at the same net normal stress and suction.
Resumo:
The authors report the design and construction of a very simple vibrating reed apparatus with automatic frequency locking capability where the resonance frequency and the internal friction can be recorded continuously as a function of temperature. The apparatus is particularly suitable for studies down to liquid helium temperatures or below.
Resumo:
The objective of this study was to gain an understanding for drying sawn timber produced from fast-grown, well-managed Queensland hardwood plantations using accelerated drying methods. Due to limited resources, this was a preliminary study and further work will be required to optimize schedules for industrial implementation. Three conventional kiln trials, including two for 38-mm-thick, 19-year-old plantation Gympie messmate (Eucalyptus cloeziana F. Muell.) and one for 25mm thick, 15-year-old plantation red mahogany (Eucalyptus pellita F. Muell.), and two vacuum kiln drying trials, one each for 38- and 25mm thick Gympie messmate, were conducted. Measurements of final cross-sectional moisture content, moisture content gradient, residual drying stress, and internal and surface checking were used to quantify dried quality. Drying schedules were chosen based on either existing published schedules or, in the case of the vacuum drying trials, existing schedules for species with similar wood density and dying degrade properties, or manipulated schedules based on the results of trials conducted during this study. The findings indicate that both species can be dried using conventional drying techniques with acceptable grade quality in approximately 75 percent of the drying time that industry is currently achieving when drying native forest timber of the same species. The vacuum drying time was 60 percent less than conventional drying for 38-mm-thick, 19-year-old Gympie messmate, although drying quality needs improving. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimized to suit the desired expectation. Additional research is required to further optimize the schedules to ensure acceptable grade qualities can be reliably achieved across all drying criteria and exploit opportunities to reduce drying times further.
Resumo:
Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.
Resumo:
A circuit capable of producing bipolar square pulses of voltages up to +or-400 V, employing an integrated circuit timer and two mercury wetted relays is described. The frequency of the pulses can be varied from a cycle min-1 to 2 kHz. A variable temperature sample chamber and the temperature control and measurement circuits are also described. The performance of the circuit is evaluated using samples of TGS and NaNO2.
Resumo:
Evaluating the length of time required to dry hardwood timber using vacuum drying compared to conventional drying facilities and technology.
Resumo:
Research the viability of vacuum drying Australian commercially important hardwood species.
Resumo:
Computational Modelling of the Vacuum Drying of Australian Hardwoods.
Resumo:
This manual is a guide to establishing a set of operations to achieve high grade results in product quality and recovery, flexibility, innovation, cost, and competitiveness. The manual outlines: - economic and feasible technologies for increasing recovery and reducing avoidable loss during processing, from the log to the finished board, and - mechanisms that allow production value to be optimised in different sized mills. Part 2 includes sections 8 to 17: Air drying, pre-drying, reconditioning, controlled final drying, dry milling, storage, information assessment, drying quality assessment, moisture content monitoring, glossary. Part 1 Link: http://era.deedi.qld.gov.au/3138 Covers sections 1 to 7: Drying overview and strategy, coupe, log yard, green mill, green pack, bioprotection, rack timber.
Resumo:
This manual is a guide to establishing a set of operations to achieve high grade results in product quality and recovery, flexibility, innovation, cost, and competitiveness. The manual outlines: - economic and feasible technologies for increasing recovery and reducing avoidable loss during processing, from the log to the finished board, and - mechanisms that allow production value to be optimised in different sized mills. Part 1 covers sections 1 to 7: Drying overview and strategy, coupe, log yard, green mill, green pack, bioprotection, rack timber. Part 2 Link: http://era.deedi.qld.gov.au/3137 Includes sections 8 to 17: Air drying, pre-drying, reconditioning, controlled final drying, dry milling, storage, information assessment, drying quality assessment, moisture content monitoring, glossary.
Resumo:
Drying regrowth native hardwoods to satisfactory moisture levels is a significant challenge for the processing industry. Dried quality is becoming increasingly important as sawn hardwood continues to move away from structural markets into appearance applications, but more difficult to achieve as the resource mix being processed becomes younger. An accurate, predictive drying model is a powerful tool in schedule development, decreasing the reliance on expensive, repetitive drying trials. This project updates the KilnSched drying model to allow the drying behaviour of regrowth blackbutt, jarrah, messmate, spotted gum and Victorian ash to be modeled more accurately. The effect of high temperature drying and humidity treatments on spotted gum were also investigated, as was the economics of various drying methods on spotted gum and blackbutt.
Resumo:
The results of drying trials show that vacuum drying produces material of the same or better quality than is currently being produced by conventional methods within 41 to 66 % of the drying time, depending on the species. Economic analysis indicates positive or negative results depending on the species and the size of drying operation. Definite economic benefits exist by vacuum drying over conventional drying for all operation sizes, in terms of drying quality, time and economic viability, for E. marginata and E. pilularis. The same applies for vacuum drying C. citriodora and E. obliqua in larger drying operations (kiln capacity 50 m3 or above), but not for smaller operations at this stage. Further schedule refinement has the ability to reduce drying times further and may improve the vacuum drying viability of the latter species in smaller operations.
Resumo:
Amino functionalised mesoporous silica nanoparticles (AM-41) have been identified as a promising vaccine delivery material. The capacity of AM-41 to stabilise vaccine components at ambient temperature (23–27 °C) was determined by adsorbing the model antigen ovalbumin (OVA) to AM-41 particles (OVA-41). The OVA-41 was successfully freeze-dried using the excipients 5% trehalose and 1% PEG8000. Both the immunological activity of OVA and the nanoparticle structure were maintained following two months storage at ambient temperature. The results of immunisation studies in mice with reconstituted OVA-41 demonstrated the induction of humoral and cell-meditated immune responses. The capacity of AM-41 particles to facilitate ambient storage of vaccine components without loss of immunological potency will underpin the further development of this promising vaccine delivery platform.