936 resultados para Drugs - Structure-activity relationships
Resumo:
Depression is a widespread humor disturbance promoted mainly by depletion of biogenic neurotransmitter amines involved in the CNS synapses. Effective drug treatments for depression have been available for more than forty years. Despite its remarkable structural diversity, this paper discuss under the medicinal chemistry point of view, all different classes of "monoamine based" antidepressant drugs, emphasizing the rational design, structure-activity relationships (SAR), biotransformation and physico-chemical properties related with antidepressant activity and molecular mechanism of action.
Resumo:
Molecular Modeling is an important tool in drug design and it is very useful to predict biological activity from a library of compounds. A wide variety of computer programs and methods have been developed to visualize the tridimensional geometry and calculate physical properties of drugs. In this work, we describe a practical approach of molecular modeling as a powerful tool to study structure-activity relationships of drugs, including some antibacterials, hormones, cholinergic and adrenergic agents. At first, the students learn how to draw 3D structures and use them to perform conformational and molecular analysis. Thus, they compare drugs with similar pharmacological activity by superimposing one structure on the top of another and evaluate the geometry and physical properties.
Resumo:
Schizophrenia is a devastating psychiatric illness that affects 1-2% of the world population and continues as a challenge to neuroscience. In this work, we describe an account about the historical evolution of the dopaminergic hypothesis of schizophrenia discussing, from the medicinal chemistry point of view all different classes of antipsychotic drugs, emphasizing the rational design, structure activity relationships (SAR) and physico-chemical properties related with its molecular mechanism of action.
Resumo:
This review presents natural, semi-synthetic and synthetic bioactive macrolactams and their structure-activity relationships when available. For macrolactams in clinical use the advantages and disadvantages in relation to other drugs are presented, and for synthetic macrolactams the method used in the cyclization is showed. Regarding macrocyclic synthesis by the tri-n-butyltin hydride-mediated radicalar carbocyclization reaction the precursor, the reaction conditions, products and yields, mechanism and cyclization mode are discussed.
Resumo:
Multidrug resistance, MDR is a major obstacle for cancer chemotherapy. MDR can be reversed by drugs that vary in their chemical structure and main biological activity. Many efforts have been done to overcome MDR based on studies of structure-activity relationships and in this review we summarize some aspects of MDR mediated by P-glycoprotein (P-gp), as the most experimentally and clinically tested form of drug resistance. The most significant MDR mechanisms revealed until now are shortly discussed. Physicochemical and structural properties of MDR modulators, measures of the MDR reversal, and QSAR studies are included.
Resumo:
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.
Resumo:
Teaching classes and events regarding the molecular aspects of drug-receptor interactions is not an easy task. The ligand stereochemistry and the spatial arrangement of the macromolecular targets highly increase the complexity of the process. In this context, the use of alternative and more playful approaches could allow students to gain a more thorough understanding of this important topic in medicinal chemistry. Herein, we describe a practical teaching approach that uses computational strategies as a tool for drug-receptor interaction studies performed for angiotencsin converting enzyme inhibitors (ACEi). Firstly, the students learn how to find the crystallographic structure (enzyme-ligand complex). Then, they proceed to the treatment of crude crystallographic data. Thereafter, they learn how to analyze the positioning of the drug on the active site of the enzyme, looking for regions related to the molecular recognition. At the end of the study, students can summarize the molecular requirements for the interaction and the structure-activity relationships of the studied drugs.
Resumo:
Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.
Resumo:
HIV attachment via the CD4 receptor is an important target for developing novel approaches to HIV chemotherapy. Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. An effective five-step synthesis of CADA in 30% overall yield is reported. This synthesis has also been modified to produce more than 50 analogues. Many tail-group analogues have been made by removing the benzyl tail of CADA and replacing it with various alkyl, acyl, alkoxycarbonyl and aminocarbonyl substituents. A series of sidearm analogues, including two unsymmetrical compounds, have also been prepared by modifying the CADA synthesis, replacing the toluenesulfonyl sidearms with other sulfonyl groups. Testing 30 of these compounds in MT-4 cells shows a wide range of CD4 down-modulation potency, which correlates with ability to inhibit HIV-1. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The X-ray crystal structures of four compounds, including CADA, show the same major conformation of the central 12-membered ring. The solid-state structure of CADA was energy minimized and used to generate the remaining 29 structures, which were similarly minimized and aligned to produce the 3D-QSAR models. Both models indicate that steric bulk of the tail group, and, to a lesser extent, the sidearms mainly determine CD4 down-modulation potency in this series of compounds.
Resumo:
Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Thirty one new sodium heterosulfamates, RNHSO3Na, where the R portion contains mainly thiazole, benzothiazole, thiadiazole and pyridine ring structures, have been synthesized and their taste portfolios have been assessed. A database of 132 heterosulfamates ( both open-chain and cyclic) has been formed by combining these new compounds with an existing set of 101 heterosulfamates which were previously synthesized and for which taste data are available. Simple descriptors have been obtained using (i) measurements with Corey-Pauling-Koltun (CPK) space- filling models giving x, y and z dimensions and a volume VCPK, (ii) calculated first order molecular connectivities ((1)chi(v)) and (iii) the calculated Spartan program parameters to obtain HOMO, LUMO energies, the solvation energy E-solv and V-SPART AN. The techniques of linear (LDA) and quadratic (QDA) discriminant analysis and Tree analysis have then been employed to develop structure-taste relationships (SARs) that classify the sweet (S) and non-sweet (N) compounds into separate categories. In the LDA analysis 70% of the compounds were correctly classified ( this compares with 65% when the smaller data set of 101 compounds was used) and in the QDA analysis 68% were correctly classified ( compared to 80% previously). TheTree analysis correctly classified 81% ( compared to 86% previously). An alternative Tree analysis derived using the Cerius2 program and a set of physicochemical descriptors correctly classified only 54% of the compounds.
Resumo:
Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.