969 resultados para Drug-metabolizing Enzyme


Relevância:

80.00% 80.00%

Publicador:

Resumo:

EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of βαβαββ-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future. © 2007 Bentham Science Publishers Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection. © 2007 Pelizon et al; licensee BioMed Central Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim. Occlusion and reperfusion of splanchnic arteries cause local and systemic changes due to the release of cytotoxic substances and the interaction between neutrophils and endothelial cells. This study evaluated the role of pentoxifylline (PTX) and n-acetylcysteine (NAC) in the reduction of ischemia, reperfusion shock and associated intestinal injury. Methods. Sixty rats were divided into 6 groups of 10 animals. Rats in three groups underwent mesenteric ischemia for 30 minutes followed by 120 minutes of reperfusion, and were treated with saline (SAL-5 mL/kg/ h), pentoxifylline (PTX-50 mg/kg) or n-acetylcysteine (NAC-430 mg/kg/h). The other 3 groups underwent sham ischemia and reperfusion (I/R) and received the same treatments. Hemodynamic, biochemical and histological parameters were evaluated. Results. No significant hemodynamic or intestinal histological changes were seen in any sham group. No histological changes were found in the lung or liver of animals in the different groups. There was a progressive decrease in mean arterial blood pressure, from mean of 111.53 mmHg (30 minutes of ischemia) to 44.30±19.91 mmHg in SAL-I/R. 34.52±17.22 mmHg in PTX-I/R and 33.81±8.39 mmHg in NAC-I/R (P<0.05). In all I/R groups, there was a progressive decrease in: aortic blood flow, from median baseline of 19.00 mL/min to 2.50±5.25 mL/min in SAL-I/ R; 2.95±6.40 mL/min in PTX-I/R and 3.35±3.40 mL/min in NAC-I/R (P<0.05); in the heart rate, from mean baseline of 311.74 bpm to 233.33±83.88 bpm in SAL-I/R, 243.20±73.25 bpm in PTX-I/R and 244.92±76.05 bpm in NAC-I/R (P<0.05); and esophageal temperature, from mean baseline of 33.68°C to 30.53±2.05°C in SAL-I/R, 30.69±2.21°C in PTX-I/R and 31.43±1.03°C in NAC-I/R (P<0.05). In the other hand, there was an attenuation of mucosal damage in the small intestine of the animals receiving PTX, and only in the ileum of the animals receiving NAC. No changes were found in ileum or plasma malondialdehyde levels in any group. Conclusion. PTX was more efficient in reducing histological lesions than NAC, but neither treatment prevented hemodynamic changes during splanchnic organs I/R.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA), Sealapex, and a combination of Sealapex and MTA (Sealapex Plus) on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doxorubicin (DOX) is an anthracycline antibiotic with a broad antitumor spectrum. However, the clinical use of DOX is limited because of its cardiotoxicity, a dose-dependent effect. Colloidal drug delivery systems, such as microemulsions (MEs), allow the incorporation of drugs, modifying the pharmacokinetic (PK) profile and toxic effects. In this study, we evaluated the PK profile and cardiotoxicity of a new DOX ME (DOX-ME). The PK profile of DOX-ME was determined and compared with that of the conventional DOX after single-dose administration (6mg/kg, intravenous) in male Wistar rats (n = 12 per group). The cardiotoxicity of DOX formulations was evaluated by serum creatine kinase MB (CKMB) activity in both animal groups before and after drug administration. The plasma DOX measurements were performed by high-performance liquid chromatography with fluorescence detection, and the CKMB levels were assayed using the CKMB Labtest® kit. The ME system showed a significant increase in plasma DOX concentrations and lower distribution volume when compared with conventional DOX. Serum CKMB activity increased after conventional DOX administration but was unchanged in the DOX-ME group. These results demonstrate modifications in drug access to susceptible sites using DOX-ME. DOX-ME displayed features that make it a promising system for future therapeutic application. © 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

β-glucan is an important polysaccharide due to its medicinal properties of stimulating the immune system and preventing chronic diseases such as cancer. The aim of the present study was to determine the anticlastogenic effect of β-glucan in cells exposed to ultraviolet radiation (UV). Chromosome aberration assay was performed in drug-metabolizing cells (HTC) and non drug-metabolizing cells (CHO-K1 and repair-deficient CHO-xrs5), using different treatment protocols. Continuous treatment (UV + β-glucan) was not effective in reducing the DNA damage only in CHO-xrs5 cells. However, the pre-treatment protocol (β-glucan before UV exposition) was effective in reducing DNA damage only in CHO-K1 cells. In post-treatment (β-glucan after UV exposition) did not show significative anticlastogenic effects, although there was a tendency toward prevention. The data suggest that β-glucan has more than one action mechanism, being capable of exerting desmutagenic as well as bio-antimutagenic action. The findings also suggest that the presence of the xenobiotic metabolizing system can reduce the chemopreventive capacity of β-glucan. Therefore, these results indicate that β-glucan from Saccharomyces cerevisiae can be used in the prevention and/or reduction of DNA damage. © 2012 Springer Science+Business Media B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study determined if dentin proteases are denatured by phosphoric acid (PA) used in etch-and-rinse dentin adhesives. Dentin beams were completely demineralized with EDTA for 30 days. We acid-etched experimental groups by exposing the demineralized dentin beams to 1, 10, or 37 mass% PA for 15 sec or 15 min. Control beams were not exposed to PA but were incubated in simulated body fluid for 3 days to assay their total endogenous telopeptidase activity, by their ability to solubilize C-terminal crosslinked telopeptides ICTP and CTX from insoluble dentin collagen. Control beams released 6.1 ± 0.8 ng ICTP and 0.6 ± 0.1 ng CTX/mg dry-wt/3 days. Positive control beams pre-incubated in p-aminophenylmercuric acetate, a compound known to activate proMMPs, released about the same amount of ICTP peptides, but released significantly less CTX. Beams immersed in 1, 10, or 37 mass% PA for 15 sec or 15 min released amounts of ICTP and CTX similar to that released by the controls (p > 0.05). Beams incubated in galardin, an MMP inhibitor, or E-64, a cathepsin inhibitor, blocked most of the release of ICTP and CTX, respectively. It is concluded that PA does not denature endogenous MMP and cathepsin activities of dentin matrices. © 2013 International & American Associations for Dental Research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that a1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the a1B and a1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent a1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that thisproperty of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed a1A-AR regulation. OXY shows functional selectivity relative to NE and PE at a1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Even though community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) was described a decade ago, reports from Brazil are scarce and cases occurred in large urban centers. We report MRSA sepsis in a 16-year-old male from a small town and who had no history of exposure to healthcare or recent travel. After trauma during a soccer match, he presented swelling in the right thigh, which evolved in a month to cellulitis complicated by local abscess, orchitis and pneumonia. The patient presented severe sepsis, with fever and respiratory failure. Laboratory findings included blood leukocyte counts above 40,000/mm3 and thrombocytopenia. He was submitted to mechanical ventilation and therapy with vancomycin and imipenem. He had a slow but favorable response to therapy and was discharged after six weeks of hospitalization. MRSA grew from blood cultures and respiratory aspirates obtained before antimicrobial therapy. The isolate belonged to sequence type 5, spa type t311, harbored SCCmec type IV and genes for Panton-Valentine leukocidin and Enterotoxin A. The pulsed-field gel electrophoresis pattern was distinct from North American classic CA-MRSA clones. However, the sequence type and the spa type revealed that the clone belong to the same clonal complex isolated in Argentina. This is the first CA-MRSA infection reported in that region, with significant epidemiologic and clinical implications. © 2013 Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little over the past 30 years. In the present study we tested and compared the in vitro antitumor activities of four different inhibitors of Polo-like kinase 1 (PLK1) (BI 2536, BI 6727, GW843682X, and GSK461364), against 3 bladder carcinoma cell lines RT4, 5637 and T24. The impact on radiosensitivity and drug interactions in simultaneous treatments with cisplatin, methotrexate, and doxorubicin were also investigated. Our results showed that PLK1 inhibition prevented cell proliferation and clonogenicity, causing significant inhibition of invasion of tumor cells, though modest differences were observed between drugs. Moreover, all PLK1 inhibitors induced G2/M arrest, with the subsequent induction of death in all 3 cell lines. Drug interactions studies showed auspicious results for all PLK1 inhibitors when combined with the commonly used cisplatin and methotrexate, though combinations with doxorubicin showed mostly antagonistic effects. Comparably, the four PLK1 inhibitors efficiently sensitized cells to ionizing radiation. Our findings demonstrate that irrespective of the inhibitor used, the pharmacological inhibition of PLK1 constrains bladder cancer growth and dissemination, providing new opportunities for future therapeutic intervention. However, further laboratorial and preclinical tests are still needed to corroborate the usefulness of using them in combination with other commonly used chemotherapeutic drugs. © 2013 Landes Bioscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of resistance to anthelmintics has prompted research into alternative methods of controlling intestinal nematodes in ruminants. This study aimed to assess the activity of Ananas comosus on Haemonchus contortus in Santa Inês sheep. The aqueous extract of pineapple skin (AEPS), bromelain from pineapple stems (B4882) and residue from pineapple processing was evaluated in in vitro and in vivo tests. The enzymatic activity of substances was analyzed by the azocasein method. The egg hatch test (EHT) and larval development test (LDT) were performed using the Embrapa2010 isolate of H. contortus. In the in vivo test, 36 sheep artificially infected with H. contortus were divided into six groups: G1: 2g/kg BW of the aqueous extract administered for three days; G2: 2g/kg BW of the industrial pineapple residue for 60 days; G3: 180mg/animal of bromelain in a single dose; G4: negative control I; G5: positive control (levamisole phosphate); and G6: negative control II. The eggs per gram (EPG) in the feces were counted till 28 days after treatment. LC50 and LC90 were obtained by the probit procedure, while the in vivo test results were analyzed by GLM. The aqueous extract in the in vitro and in vivo test, the bromelain and industrial residue presented 0.102, 0.157, 1.864 and 0.048 enzyme units/mL, respectively. In the egg hatch test, the LC50 and LC90 were respectively 31 and 81mg/mL for the aqueous extract and 0.50 and 2mg/mL for bromelain. In the larval development test, the LC50 and LC90 were respectively 1.7 and 7.3mg/mL for the aqueous extract and 0.019 and 0.086mg/mL for bromelain. In the in vivo test, the general efficacies of the treatments in relation to the negative control were 22.6%, 42.2%, 3.65% and 89% for the aqueous extract, industrial pineapple residue, bromelain and positive control respectively. The transformed EPG values were 3.19±0.59, 3.32±0.25, 2.85±0.66, 3.44±0.50, 2.28±0.93 and 2.75±0.94 for the aqueous extract, industrial residue, bromelain, negative control I, positive control and negative control II respectively. The results for all the treated groups differed significantly (p<0.05) from the positive control, and although the residue presented efficacy of 42.2%, there was no statistical difference (p>0.05) in relation to the negative control. Therefore, both the aqueous extract and bromelain were effective in vitro, but showed reduced anthelmintic efficacy in vivo. For the pineapple residue, the 42.2% in vivo efficacy in reducing the EPG and the possibility of reducing environmental contamination through reuse of industrial residue indicate it can also be useful for control of this parasite. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)