997 resultados para Drug modeling
Resumo:
West Nile Virus is becoming a widespread pathogen, infecting people on at least four continents with no effective treatment for these infections or many of their associated pathologies. A key enzyme that is essential for viral replication is the viral protease NS2B-NS3, which is highly conserved among all flaviviruses. Using a combination of molecular fitting of substrates to the active site of the crystal structure of NS3,site-directed enzyme and cofactor mutagenesis, and kinetic studies on proteolytic processing of panels of short peptide substrates, we have identified important enzyme-substrate interactions that define substrate specificity for NS3 protease. In addition to better understanding the involvement of S2, S3, and S4 enzyme residues in substrate binding, a residue within cofactor NS2B has been found to strongly influence the preference of flavivirus proteases for lysine or arginine at P2 in substrates. Optimization of tetrapeptide substrates for enhanced protease affinity and processing efficiency has also provided important clues for developing inhibitors of West Nile Virus infection.
Resumo:
Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.
Resumo:
The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Among people living with HIV (PLWH), adherence to antiretroviral therapy (ART) can be affected by problems of neurocognitive (NC) impairment, stress, alcohol and other drug (AOD) abuse, and other barriers. The aims of this research were to: (1) examine factors associated with NC impairment, (2) explore relationships between psychosocial variables with ART adherence and viral load (VL), and (3) evaluate the efficacy of an evidence-based intervention in improving ART adherence, increasing service utilization, and decreasing VL. The first study (n=370) was cross sectional and used structural equation modeling to test whether AOD use, years living with HIV, and time from HIV diagnosis to seeking care were associated with poorer NC functioning. The second study (n=246) used similar methods to test the hypothesis that stress, barriers to adherence, NC impairment, poor social support, and AOD use were related to lower VL mediated by ART adherence. The third study (n=243) evaluated an evidence-based, eight-session program to improve ART adherence, reduce VL, and increase service utilization in a randomized controlled trial. Study participants were PLWH living in South Florida, 18 to 60 years old, with a history of alcohol abuse enrolled from January 2009 through November 2012. Secondary analysis of available data showed: (1) scores on interference with executive functioning increased by 0.32 for each day of marijuana use and 1.18 for each year living with HIV, but no association was found between alcohol use and NC functioning; (2) each barrier to adherence was associated with a 10% decrease in adherence to ART and a 0.42 unit increase in VL (log10) and the relationship between barriers and VL was partially mediated by ART adherence; (3) participants in the evidence-based program were more likely than the comparison group to report an undetectable VL (OR=2.25, p<0.01) at 6 months, but not 3 months, post-intervention. Psychosocial factors affect VL, but ART adherence is essential in achieving an undetectable VL in PLWH.
Resumo:
A new modality for preventing HIV transmission is emerging in the form of topical microbicides. Some clinical trials have shown some promising results of these methods of protection while other trials have failed to show efficacy. Due to the relatively novel nature of microbicide drug transport, a rigorous, deterministic analysis of that transport can help improve the design of microbicide vehicles and understand results from clinical trials. This type of analysis can aid microbicide product design by helping understand and organize the determinants of drug transport and the potential efficacies of candidate microbicide products.
Microbicide drug transport is modeled as a diffusion process with convection and reaction effects in appropriate compartments. This is applied here to vaginal gels and rings and a rectal enema, all delivering the microbicide drug Tenofovir. Although the focus here is on Tenofovir, the methods established in this dissertation can readily be adapted to other drugs, given knowledge of their physical and chemical properties, such as the diffusion coefficient, partition coefficient, and reaction kinetics. Other dosage forms such as tablets and fiber meshes can also be modeled using the perspective and methods developed here.
The analyses here include convective details of intravaginal flows by both ambient fluid and spreading gels with different rheological properties and applied volumes. These are input to the overall conservation equations for drug mass transport in different compartments. The results are Tenofovir concentration distributions in time and space for a variety of microbicide products and conditions. The Tenofovir concentrations in the vaginal and rectal mucosal stroma are converted, via a coupled reaction equation, to concentrations of Tenofovir diphosphate, which is the active form of the drug that functions as a reverse transcriptase inhibitor against HIV. Key model outputs are related to concentrations measured in experimental pharmacokinetic (PK) studies, e.g. concentrations in biopsies and blood. A new measure of microbicide prophylactic functionality, the Percent Protected, is calculated. This is the time dependent volume of the entire stroma (and thus fraction of host cells therein) in which Tenofovir diphosphate concentrations equal or exceed a target prophylactic value, e.g. an EC50.
Results show the prophylactic potentials of the studied microbicide vehicles against HIV infections. Key design parameters for each are addressed in application of the models. For a vaginal gel, fast spreading at small volume is more effective than slower spreading at high volume. Vaginal rings are shown to be most effective if inserted and retained as close to the fornix as possible. Because of the long half-life of Tenofovir diphosphate, temporary removal of the vaginal ring (after achieving steady state) for up to 24h does not appreciably diminish Percent Protected. However, full steady state (for the entire stromal volume) is not achieved until several days after ring insertion. Delivery of Tenofovir to the rectal mucosa by an enema is dominated by surface area of coated mucosa and whether the interiors of rectal crypts are filled with the enema fluid. For the enema 100% Percent Protected is achieved much more rapidly than for vaginal products, primarily because of the much thinner epithelial layer of the mucosa. For example, 100% Percent Protected can be achieved with a one minute enema application, and 15 minute wait time.
Results of these models have good agreement with experimental pharmacokinetic data, in animals and clinical trials. They also improve upon traditional, empirical PK modeling, and this is illustrated here. Our deterministic approach can inform design of sampling in clinical trials by indicating time periods during which significant changes in drug concentrations occur in different compartments. More fundamentally, the work here helps delineate the determinants of microbicide drug delivery. This information can be the key to improved, rational design of microbicide products and their dosage regimens.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
BACKGROUND: Multiyear epidemics of Salmonella enterica serovar Typhi have been reported from countries across eastern and southern Africa in recent years. In Blantyre, Malawi, a dramatic increase in typhoid fever cases has recently occurred, and may be linked to the emergence of the H58 haplotype. Strains belonging to the H58 haplotype often exhibit multidrug resistance and may have a fitness advantage relative to other Salmonella Typhi strains.
METHODS: To explore hypotheses for the increased number of typhoid fever cases in Blantyre, we fit a mathematical model to culture-confirmed cases of Salmonella enterica infections at Queen Elizabeth Central Hospital, Blantyre. We explored 4 hypotheses: (1) an increase in the basic reproductive number (R0) in response to increasing population density; (2) a decrease in the incidence of cross-immunizing infection with Salmonella Enteritidis; (3) an increase in the duration of infectiousness due to failure to respond to first-line antibiotics; and (4) an increase in the transmission rate following the emergence of the H58 haplotype.
RESULTS: Increasing population density or decreasing cross-immunity could not fully explain the observed pattern of typhoid emergence in Blantyre, whereas models allowing for an increase in the duration of infectiousness and/or the transmission rate of typhoid following the emergence of the H58 haplotype provided a good fit to the data.
CONCLUSIONS: Our results suggest that an increase in the transmissibility of typhoid due to the emergence of drug resistance associated with the H58 haplotype may help to explain recent outbreaks of typhoid in Malawi and similar settings in Africa.
Resumo:
The use of chemical control measures to reduce the impact of parasite and pest species has frequently resulted in the development of resistance. Thus, resistance management has become a key concern in human and veterinary medicine, and in agricultural production. Although it is known that factors such as gene flow between susceptible and resistant populations, drug type, application methods, and costs of resistance can affect the rate of resistance evolution, less is known about the impacts of density-dependent eco-evolutionary processes that could be altered by drug-induced mortality. The overall aim of this thesis was to take an experimental evolution approach to assess how life history traits respond to drug selection, using a free-living dioecious worm (Caenorhabditis remanei) as a model. In Chapter 2, I defined the relationship between C. remanei survival and Ivermectin dose over a range of concentrations, in order to control the intensity of selection used in the selection experiment described in Chapter 4. The dose-response data were also used to appraise curve-fitting methods, using Akaike Information Criterion (AIC) model selection to compare a series of nonlinear models. The type of model fitted to the dose response data had a significant effect on the estimates of LD50 and LD99, suggesting that failure to fit an appropriate model could give misleading estimates of resistance status. In addition, simulated data were used to establish that a potential cost of resistance could be predicted by comparing survival at the upper asymptote of dose-response curves for resistant and susceptible populations, even when differences were as low as 4%. This approach to dose-response modeling ensures that the maximum amount of useful information relating to resistance is gathered in one study. In Chapter 3, I asked how simulations could be used to inform important design choices used in selection experiments. Specifically, I focused on the effects of both within- and between-line variation on estimated power, when detecting small, medium and large effect sizes. Using mixed-effect models on simulated data, I demonstrated that commonly used designs with realistic levels of variation could be underpowered for substantial effect sizes. Thus, use of simulation-based power analysis provides an effective way to avoid under or overpowering a study designs incorporating variation due to random effects. In Chapter 4, I 3 investigated how Ivermectin dosage and changes in population density affect the rate of resistance evolution. I exposed replicate lines of C. remanei to two doses of Ivermectin (high and low) to assess relative survival of lines selected in drug-treated environments compared to untreated controls over 10 generations. Additionally, I maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug treatment versus ecological processes affected by changes in density-dependent feedback. Intriguingly, both drug-selected and random-mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life-history stage. The results suggest that interactions between density-dependent processes and life history may mediate evolved changes in susceptibility to control measures, which could result in misleading conclusions about the evolution of heritable resistance following drug treatment. In Chapter 5, I investigated whether the apparent changes in drug susceptibility found in Chapter 4 were related to evolved changes in life-history of C. remanei populations after selection in drug-treated and random-mortality environments. Rapid passage of lines in the drug-free environment had no effect on the measured life-history traits. In the drug-free environment, adult size and fecundity of drug-selected lines increased compared to the controls but drug selection did not affect lifespan. In the treated environment, drug-selected lines showed increased lifespan and fecundity relative to controls. Adult size of randomly culled lines responded in a similar way to drug-selected lines in the drug-free environment, but no change in fecundity or lifespan was observed in either environment. The results suggest that life histories of nematodes can respond to selection as a result of the application of control measures. Failure to take these responses into account when applying control measures could result in adverse outcomes, such as larger and more fecund parasites, as well as over-estimation of the development of genetically controlled resistance. In conclusion, my thesis shows that there may be a complex relationship between drug selection, density-dependent regulatory processes and life history of populations challenged with control measures. This relationship could have implications for how resistance is monitored and managed if life histories of parasitic species show such eco-evolutionary responses to drug application.
Resumo:
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.
Resumo:
Among people living with HIV (PLWH), adherence to antiretroviral therapy (ART) can be affected by problems of neurocognitive (NC) impairment, stress, alcohol and other drug (AOD) abuse, and other barriers. The aims of this research were to: (1) examine factors associated with NC impairment, (2) explore relationships between psychosocial variables with ART adherence and viral load (VL), and (3) evaluate the efficacy of an evidence-based intervention in improving ART adherence, increasing service utilization, and decreasing VL. The first study (n=370) was cross sectional and used structural equation modeling to test whether AOD use, years living with HIV, and time from HIV diagnosis to seeking care were associated with poorer NC functioning. The second study (n=246) used similar methods to test the hypothesis that stress, barriers to adherence, NC impairment, poor social support, and AOD use were related to lower VL mediated by ART adherence. The third study (n=243) evaluated an evidence-based, eight-session program to improve ART adherence, reduce VL, and increase service utilization in a randomized controlled trial. Study participants were PLWH living in South Florida, 18 to 60 years old, with a history of alcohol abuse enrolled from January 2009 through November 2012. Secondary analysis of available data showed: (1) scores on interference with executive functioning increased by 0.32 for each day of marijuana use and 1.18 for each year living with HIV, but no association was found between alcohol use and NC functioning; (2) each barrier to adherence was associated with a 10% decrease in adherence to ART and a 0.42 unit increase in VL (log10) and the relationship between barriers and VL was partially mediated by ART adherence; (3) participants in the evidence-based program were more likely than the comparison group to report an undetectable VL (OR=2.25, p Psychosocial factors affect VL, but ART adherence is essential in achieving an undetectable VL in PLWH.
Resumo:
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly. Donepezil is the first-line drug used for AD. In section one, the experimental activity was oriented to evaluate and characterize molecular and cellular mechanisms that contribute to neurodegeneration induced by the Aβ1-42 oligomers (Aβ1-42O) and potential neuroprotective effects of the hybrids feruloyl-donepezil compound called PQM130. The effects of PQM130 were compared to donepezil in a murine AD model, obtained by intracerebroventricular (i.c.v.) injection of Aβ1-42O. The intraperitoneal administration of PQM130 (0.5-1 mg/kg) after i.c.v. Aβ1-42O injection improved learning and memory, protecting mice against spatial cognition decline. Moreover, it reduced oxidative stress, neuroinflammation and neuronal apoptosis, induced cell survival and protein synthesis in mice hippocampus. PQM130 modulated different pathways than donepezil, and it is more effective in counteracting Aβ1-42O damage. The section two of the experimental activity was focused on studying a loss of function variants of ABCA7. GWA studies identified mutations in the ABCA7 gene as a risk factor for AD. The mechanism through which ABCA7 contributes to AD is not clear. ABCA7 regulates lipid metabolism and critically controls phagocytic function. To investigate ABCA7 functions, CRISPR/Cas9 technology was used to engineer human iPSCs and to carry the genetic variant Y622*, which results in a premature stop codon, causing ABCA7 loss-of-function. From iPSCs, astrocytes were generated. This study revealed the effects of ABCA7 loss in astrocytes. ABCA7 Y622* mutation induced dysfunctional endocytic trafficking, impairing Aβ clearance, lipid dysregulation and cell homeostasis disruption, alterations that could contribute to AD. Though further studies are needed to confirm the PQM130 neuroprotective role and ABCA7 function in AD, the provided results showed a better understanding of AD pathophysiology, a new therapeutic approach to treat AD, and illustrated an innovative methodology for studying the disease.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.
Resumo:
Substantial complexity has been introduced into treatment regimens for patients with human immunodeficiency virus (HIV) infection. Many drug-related problems (DRPs) are detected in these patients, such as low adherence, therapeutic inefficacy, and safety issues. We evaluated the impact of pharmacist interventions on CD4+ T-lymphocyte count, HIV viral load, and DRPs in patients with HIV infection. In this 18-month prospective controlled study, 90 outpatients were selected by convenience sampling from the Hospital Dia-University of Campinas Teaching Hospital (Brazil). Forty-five patients comprised the pharmacist intervention group and 45 the control group; all patients had HIV infection with or without acquired immunodeficiency syndrome. Pharmaceutical appointments were conducted based on the Pharmacotherapy Workup method, although DRPs and pharmacist intervention classifications were modified for applicability to institutional service limitations and research requirements. Pharmacist interventions were performed immediately after detection of DRPs. The main outcome measures were DRPs, CD4+ T-lymphocyte count, and HIV viral load. After pharmacist intervention, DRPs decreased from 5.2 (95% confidence interval [CI] =4.1-6.2) to 4.2 (95% CI =3.3-5.1) per patient (P=0.043). A total of 122 pharmacist interventions were proposed, with an average of 2.7 interventions per patient. All the pharmacist interventions were accepted by physicians, and among patients, the interventions were well accepted during the appointments, but compliance with the interventions was not measured. A statistically significant increase in CD4+ T-lymphocyte count in the intervention group was found (260.7 cells/mm(3) [95% CI =175.8-345.6] to 312.0 cells/mm(3) [95% CI =23.5-40.6], P=0.015), which was not observed in the control group. There was no statistical difference between the groups regarding HIV viral load. This study suggests that pharmacist interventions in patients with HIV infection can cause an increase in CD4+ T-lymphocyte counts and a decrease in DRPs, demonstrating the importance of an optimal pharmaceutical care plan.