987 resultados para Drug Sensitivity
Resumo:
The treatment of some cancer patients has shifted from traditional, non-specific cytotoxic chemotherapy to chronic treatment with molecular targeted therapies. Imatinib mesylate, a selective inhibitor of tyrosine kinases (TKIs) is the most prominent example of this new era and has opened the way to the development of several additional TKIs, including sunitinib, nilotinib, dasatinib, sorafenib and lapatinib, in the treatment of various hematological malignancies and solid tumors. All these agents are characterized by an important inter-individual pharmacokinetic variability, are at risk for drug interactions, and are not devoid of toxicity. Additionally, they are administered for prolonged periods, anticipating the careful monitoring of their plasma exposure via Therapeutic Drug Monitoring (TDM) to be an important component of patients' follow-up. We have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 100 microL of plasma for the simultaneous determination of the six major TKIs currently in use. Plasma is purified by protein precipitation and the supernatant is diluted in ammonium formate 20 mM (pH 4.0) 1:2. Reverse-phase chromatographic separation of TKIs is obtained using a gradient elution of 20 mM ammonium formate pH 2.2 and acetonitrile containing 1% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 20 min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<9.6%), overall process efficiency (87.1-104.2%), as well as TKIs short- and long-term stability in plasma. The method is precise (inter-day CV%: 1.3-9.4%), accurate (-9.2 to +9.9%) and sensitive (lower limits of quantification comprised between 1 and 10 ng/mL). This is the first broad-range LC-MS/MS assay covering the major currently in-use TKIs. It is an improvement over previous methods in terms of convenience (a single extraction procedure for six major TKIs, reducing significantly the analytical time), sensitivity, selectivity and throughput. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of the latest TKIs developed after imatinib and better define their therapeutic ranges in different patient populations in order to evaluate whether a systematic TDM-guided dose adjustment of these anticancer drugs could contribute to minimize the risk of major adverse reactions and to increase the probability of efficient, long lasting, therapeutic response.
Resumo:
A study was carried out to compare the performance of a commercial method (MGIT) and four inexpensive drug susceptibility methods: nitrate reductase assay (NRA), microscopic observation drug susceptibility (MODS) assay, MTT test, and broth microdilution method (BMM). A total of 64 clinical isolates of Mycobacterium tuberculosis were studied. The Lowenstein-Jensen proportion method (PM) was used as gold standard. MGIT, NRA, MODS, and MTT results were available on an average of less than 10 days, whereas BMM results could be reported in about 20 days. Most of the evaluated tests showed excellent performance for isoniazid and rifampicin, with sensitivity and specificity values > 90%. With most of the assays, sensitivity for ethambutol was low (62-87%) whereas for streptomycin, sensitivity values ranged from 84 to 100%; NRA-discrepancies were associated with cultures with a low proportion of EMB-resistant organisms while most discrepancies with quantitative tests (MMT and BMM) were seen with isolates whose minimal inhibitory concentrations fell close the cutoff. MGIT is reliable but still expensive. NRA is the most inexpensive and easiest method to perform without changing the organization of the routine PM laboratory performance. While MODS, MTT, and BMM, have the disadvantage from the point of view of biosafety, they offer the possibility of detecting partial resistant strains. This study shows a very good level of agreement of the four low-cost methods compared to the PM for rapid detection of isoniazid, rifampicin and streptomycin resistance (Kappa values > 0.8); more standardization is needed for ethambutol.
Resumo:
Measuring antibiotic-induced killing relies on time-consuming biological tests. The firefly luciferase gene (luc) was successfully used as a reporter gene to assess antibiotic efficacy rapidly in slow-growing Mycobacterium tuberculosis. We tested whether luc expression could also provide a rapid evaluation of bactericidal drugs in Streptococcus gordonii. The suicide vectors pFW5luc and a modified version of pJDC9 carrying a promoterless luc gene were used to construct transcriptional-fusion mutants. One mutant susceptible to penicillin-induced killing (LMI2) and three penicillin-tolerant derivatives (LMI103, LMI104, and LMI105) producing luciferase under independent streptococcal promoters were tested. The correlation between antibiotic-induced killing and luminescence was determined with mechanistically unrelated drugs. Chloramphenicol (20 times the MIC) inhibited bacterial growth. In parallel, luciferase stopped increasing and remained stable, as determined by luminescence and Western blots. Ciprofloxacin (200 times the MIC) rapidly killed 1.5 log10 CFU/ml in 2-4 hr. Luminescence decreased simultaneously by 10-fold. In contrast, penicillin (200 times the MIC) gave discordant results. Although killing was slow (< or = 0.5 log10 CFU/ml in 2 hr), luminescence dropped abruptly by 50-100-times in the same time. Inactivating penicillin with penicillinase restored luminescence, irrespective of viable counts. This was not due to altered luciferase expression or stability, suggesting some kind of post-translational modification. Luciferase shares homology with aminoacyl-tRNA synthetase and acyl-CoA ligase, which might be regulated by macromolecule synthesis and hence affected in penicillin-inhibited cells. Because of resemblance, luciferase might be down-regulated simultaneously. Luminescence cannot be universally used to predict antibiotic-induced killing. Thus, introducing reporter enzymes sharing mechanistic similarities with normal metabolic reactions might reveal other effects than those expected.
Resumo:
The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies.
Resumo:
Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.
Resumo:
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.
Resumo:
BACKGROUND & AIMS Hy's Law, which states that hepatocellular drug-induced liver injury (DILI) with jaundice indicates a serious reaction, is used widely to determine risk for acute liver failure (ALF). We aimed to optimize the definition of Hy's Law and to develop a model for predicting ALF in patients with DILI. METHODS We collected data from 771 patients with DILI (805 episodes) from the Spanish DILI registry, from April 1994 through August 2012. We analyzed data collected at DILI recognition and at the time of peak levels of alanine aminotransferase (ALT) and total bilirubin (TBL). RESULTS Of the 771 patients with DILI, 32 developed ALF. Hepatocellular injury, female sex, high levels of TBL, and a high ratio of aspartate aminotransferase (AST):ALT were independent risk factors for ALF. We compared 3 ways to use Hy's Law to predict which patients would develop ALF; all included TBL greater than 2-fold the upper limit of normal (×ULN) and either ALT level greater than 3 × ULN, a ratio (R) value (ALT × ULN/alkaline phosphatase × ULN) of 5 or greater, or a new ratio (nR) value (ALT or AST, whichever produced the highest ×ULN/ alkaline phosphatase × ULN value) of 5 or greater. At recognition of DILI, the R- and nR-based models identified patients who developed ALF with 67% and 63% specificity, respectively, whereas use of only ALT level identified them with 44% specificity. However, the level of ALT and the nR model each identified patients who developed ALF with 90% sensitivity, whereas the R criteria identified them with 83% sensitivity. An equal number of patients who did and did not develop ALF had alkaline phosphatase levels greater than 2 × ULN. An algorithm based on AST level greater than 17.3 × ULN, TBL greater than 6.6 × ULN, and AST:ALT greater than 1.5 identified patients who developed ALF with 82% specificity and 80% sensitivity. CONCLUSIONS When applied at DILI recognition, the nR criteria for Hy's Law provides the best balance of sensitivity and specificity whereas our new composite algorithm provides additional specificity in predicting the ultimate development of ALF.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
PURPOSE: To investigate the influence of demethylation with 5-aza-cytidine (AZA) on radiation sensitivity and to define the intrinsic radiation sensitivity of methylation deficient colorectal carcinoma cells. METHODS AND MATERIALS: Radiation sensitizing effects of AZA were investigated in four colorectal carcinoma cell lines (HCT116, SW480, L174 T, Co115), defining influence of AZA on proliferation, clonogenic survival, and cell cycling with or without ionizing radiation. The methylation status for cancer or DNA damage response-related genes silenced by promoter methylation was determined. The effect of deletion of the potential target genes (DNMT1, DNMT3b, and double mutants) on radiation sensitivity was analyzed. RESULTS: AZA showed radiation sensitizing properties at >or=1 micromol/l, a concentration that does not interfere with the cell cycle by itself, in all four tested cell lines with a sensitivity-enhancing ratio (SER) of 1.6 to 2.1 (confidence interval [CI] 0.9-3.3). AZA successfully demethylated promoters of p16 and hMLH1, genes associated with ionizing radiation response. Prolonged exposure to low-dose AZA resulted in sustained radiosensitivity if associated with persistent genomic hypomethylation after recovery from AZA. Compared with maternal HCT116 cells, DNMT3b-defcient deficient cells were more sensitive to radiation with a SER of 2.0 (CI 0.9-2.1; p = 0.03), and DNMT3b/DNMT1-/- double-deficient cells showed a SER of 1.6 (CI 0.5-2.7; p = 0.09). CONCLUSIONS: AZA-induced genomic hypomethylation results in enhanced radiation sensitivity in colorectal carcinoma. The mediators leading to sensitization remain unknown. Defining the specific factors associated with radiation sensitization after genomic demethylation may open the way to better targeting for the purpose of radiation sensitization.
Resumo:
BACKGROUND: The frequency of HIV-1 co/super-infection is unknown despite their implications for public health and vaccine development. This issue was addressed during an epidemic of both CRF11 and B subtype among intravenous drug users (IVDUs). METHODS: Bulk sequencing of reverse transcriptase, protease and C2V3 regions and subtype-specific nested polymerase chain reaction (PCR) in plasma and proviral DNA were performed using baseline and follow-up samples collected in recently infected IVDUs between 1998-2002 and in IVDUs with chronic infection living in the same area and presenting an unexpected rise of viremia (> 1 log10). RESULTS: In 58 recently infected patients, three B/CRF-11 co-infections, 25 B, 28 CRF-11 and two other subtypes were detected at baseline. In the three co-infected patients, both CRF-11 and B were detected in plasma and proviral DNA and persisted during follow-up. B- and CFR-11-specific PCR performed on follow-up samples of 40 of 58 recently infected patients (median follow-up, 14.5 months) revealed a transient B super-infection in a patient initially infected by CRF-11. Five of 156 chronic IVDUs (total follow-up: 346 years) had an unexpected rise of viremia. In two of them, aviremic without treatment for years after an initial B infection, a symptomatic CRF-11 super-infection occurred and was associated with high viral load and a fall of CD4 cell count. CONCLUSIONS: In recently infected IVDUs, co-infection B/CRF-11 is relatively frequent (5%). In chronically infected IVDUs super-infection may be transient and may occur in patients controlling efficiently HIV infection by the initial strain.
Resumo:
According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.
Resumo:
The involvement of voltage-gated calcium channels in the survival of immature CNS neurons was studied in aggregating brain cell cultures by examining cell type-specific effects of various channel blockers. Nifedipine (10 microM), a specific blocker of L-type calcium channels, caused a pronounced and irreversible decrease of glutamic acid decarboxylase activity, whereas the activity of choline acetyltransferase was significantly less affected. Flunarizine (1-10 microM, a relatively unspecific ion channel blocker) elicited similar effects, that were attenuated by NMDA. The glia-specific marker enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase, were affected only after treatment with high concentrations of nifedipine (50 microM) or NiCl2 (100 microM, shown to block T-type calcium channels). Nifedipine (50 microM), NiCl2 (100 microM), and flunarizine (5 microM) also caused a significant increase in the soluble nucleosome concentration, indicating increased apoptotic cell death. This effect was prevented by cycloheximide (1 microM). Furthermore, the combined treatment with calcicludine (10 nM, blocking L-type calcium channels) and funnel-web spider toxin-3.3 (100 nM, blocking T-type channels) also caused a significant increase in free nucleosomes as well as a decrease in glutamic acid decarboxylase activity. In contrast, cell viability was not affected by peptide blockers specific for N-, P-, and/or Q-type calcium channels. Highly differentiated cultures showed diminished susceptibility to nifedipine and flunarizine. The present data suggest that the survival of immature neurons, and particularly that of immature GABAergic neurons, requires the sustained entry of Ca2+ through voltage-gated calcium channels.
Resumo:
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.
Resumo:
Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.
Resumo:
Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.