995 resultados para Drosophila paulistorum complex
Resumo:
Neural fate specification in Drosophila is promoted by the products of the proneural genes, such as those of the achaete–scute complex, and antagonized by the products of the Enhancer of split [E(spl)] complex, hairy, and extramacrochaetae. As all these proteins bear a helix-loop-helix (HLH) dimerization domain, we investigated their potential pairwise interactions using the yeast two-hybrid system. The fidelity of the system was established by its ability to closely reproduce the already documented interactions among Da, Ac, Sc, and Extramacrochaetae. We show that the seven E(spl) basic HLH proteins can form homo- and heterodimers inter-se with distinct preferences. We further show that a subset of E(spl) proteins can heterodimerize with Da, another subset can heterodimerize with proneural proteins, and yet another with both, indicating specialization within the E(spl) family. Hairy displays no interactions with any of the HLH proteins tested. It does interact with the non-HLH protein Groucho, which itself interacts with all E(spl) basic HLH proteins, but with none of the proneural proteins or Da. We investigated the structural requirements for some of these interactions by site-specific and deletion mutagenesis.
Resumo:
In this study, we present evidence that the Dorsal activator interacts with limiting amounts of the TFIID complex in the Drosophila embryo. In vitro transcription reactions and protein binding assays implicate the TAFII110 and TAFII60 subunits of the TFIID complex in contributing to Dorsal-mediated activation. Mutations in TAFII110 and TAFII60 result in altered patterns of snail and twist transcription in embryos derived from dl/+ females. These results suggest that TAFIIs contribute to the activation of transcription in vivo and support the hypothesis that subunits of TFIID may serve as targets of enhancer binding proteins.
Resumo:
In axons, organelles move away from (anterograde) and toward (retrograde) the cell body along microtubules. Previous studies have provided compelling evidence that conventional kinesin is a major motor for anterograde fast axonal transport. It is reasonable to expect that cytoplasmic dynein is a fast retrograde motor, but relatively few tests of dynein function have been reported with neurons of intact organisms. In extruded axoplasm, antibody disruption of kinesin or the dynactin complex (a dynein activator) inhibits both retrograde and anterograde transport. We have tested the functions of the cytoplasmic dynein heavy chain (cDhc64C) and the p150Glued (Glued) component of the dynactin complex with the use of genetic techniques in Drosophila. cDhc64C and Glued mutations disrupt fast organelle transport in both directions. The mutant phenotypes, larval posterior paralysis and axonal swellings filled with retrograde and anterograde cargoes, were similar to those caused by kinesin mutations. Why do specific disruptions of unidirectional motor systems cause bidirectional defects? Direct protein interactions of kinesin with dynein heavy chain and p150Glued were not detected. However, strong dominant genetic interactions between kinesin, dynein, and dynactin complex mutations in axonal transport were observed. The genetic interactions between kinesin and either Glued or cDhc64C mutations were stronger than those between Glued and cDhc64C mutations themselves. The shared bidirectional disruption phenotypes and the dominant genetic interactions demonstrate that cytoplasmic dynein, the dynactin complex, and conventional kinesin are interdependent in fast axonal transport.
Resumo:
We have identified partial loss of function mutations in class VI unconventional myosin, 95F myosin, which results in male sterility. During spermatogenesis the germ line precursor cells undergo mitosis and meiosis to form a bundle of 64 spermatids. The spermatids remain interconnected by cytoplasmic bridges until individualization. The process of individualization involves the formation of a complex of cytoskeletal proteins and membrane, the individualization complex (IC), around the spermatid nuclei. This complex traverses the length of each spermatid resolving the shared membrane into a single membrane enclosing each spermatid. We have determined that 95F myosin is a component of the IC whose function is essential for individualization. In wild-type testes, 95F myosin localizes to the leading edge of the IC. Two independent mutations in 95F myosin reduce the amount of 95F myosin in only a subset of tissues, including the testes. This reduction of 95F myosin causes male sterility as a result of defects in spermatid individualization. Germ line transformation with the 95F myosin heavy chain cDNA rescues the male sterility phenotype. IC movement is aberrant in these 95F myosin mutants, indicating a critical role for 95F myosin in IC movement. This report is the first identification of a component of the IC other than actin. We propose that 95F myosin is a motor that participates in membrane reorganization during individualization.
Resumo:
One of the best-described transmembrane signal transduction mechanisms is based on receptor activation of the α subunit of the heterotrimeric G protein Gs, leading to stimulation of adenylyl cyclase and the production of cAMP. Intracellular cAMP is then thought to mediate its effects largely, if not entirely, by activation of protein kinase A and the subsequent phosphorylation of substrates which in turn control diverse cellular phenomena. In this report we demonstrate, by two different methods, that reduction or elimination of protein kinase A activity had no effect on phenotypes generated by activation of Gsα pathways in Drosophila wing epithelial cells. These genetic studies show that the Gsα pathway mediates its primary effects by a novel pathway in differentiating wing epithelial cells. This novel pathway may in part be responsible for some of the complex, cell-specific responses observed following activation of this pathway in different cell types.
Resumo:
Stimulation of naive T cells by antigen-presenting cells (APC) is thought to involve two qualitatively different signals: signal one results from T-cell receptor (TCR) recognition of antigenic peptides bound to major histocompatibility complex (MHC) molecules, whereas signal two reflects contact with one or more costimulatory molecules. The requirements for stimulating naive T cells were studied with MHC class I-restricted CD8+ T cells from a T-cell receptor transgenic line, with defined peptides as antigen and transfected Drosophila cells as APC. Three main findings are reported. First, stimulation of naive T cells via signal one alone (MHC plus peptide) was essentially nonimmunogenic; thus T cells cultured with peptides presented by MHC class I-transfected Drosophila APC lacking costimulatory molecules showed little or no change in their surface phenotype. Second, cotransfection of two costimulatory molecules, B7-1 and intercellular adhesion molecule 1 (ICAM-1), converted class I+ Drosophila cells to potent APC capable of inducing strong T-proliferative responses and cytokine (interleukin 2) production. Third, B7-1 and ICAM-1 acted synergistically, indicating that signal two is complex; synergy between B7-1 and ICAM-1 varied from moderate to extreme and was influenced by both the dose and affinity of the peptide used and the parameter of T-cell activation studied. Transfected Drosophila cells are thus a useful tool for examining the minimal APC requirements for naive T cells.
Resumo:
Phocein is a widely expressed, highly conserved intracellular protein of 225 amino acids, the sequence of which has limited homology to the ς subunits from clathrin adaptor complexes and contains an additional stretch bearing a putative SH3-binding domain. This sequence is evolutionarily very conserved (80% identity between Drosophila melanogaster and human). Phocein was discovered by a yeast two-hybrid screen using striatin as a bait. Striatin, SG2NA, and zinedin, the three mammalian members of the striatin family, are multimodular, WD-repeat, and calmodulin-binding proteins. The interaction of phocein with striatin, SG2NA, and zinedin was validated in vitro by coimmunoprecipitation and pull-down experiments. Fractionation of brain and HeLa cells showed that phocein is associated with membranes, as well as present in the cytosol where it behaves as a protein complex. The molecular interaction between SG2NA and phocein was confirmed by their in vivo colocalization, as observed in HeLa cells where antibodies directed against either phocein or SG2NA immunostained the Golgi complex. A 2-min brefeldin A treatment of HeLa cells induced the redistribution of both proteins. Immunocytochemical studies of adult rat brain sections showed that phocein reactivity, present in many types of neurons, is strictly somato-dendritic and extends down to spines, just as do striatin and SG2NA.
Resumo:
The Drosophila homolog of the retinoid X receptor, ultraspiracle (USP), heterodimerizes with the ecdysone receptor (EcR) to form a functional complex that mediates the effects of the steroid molting hormone ecdysone by activating and repressing expression of ecdysone response genes. As with other retinoid X receptor heterodimers, EcR/USP affects gene transcription in a ligand-modulated manner. We used in vivo, cell culture, and biochemical approaches to analyze the functions of two usp alleles, usp3 and usp4, which encode stable proteins with defective DNA-binding domains. We observed that USP is able to activate as well as repress the Z1 isoform of the ecdysone-responsive broad complex (BrC-Z1). Activation of BrC-Z1 as well as EcR, itself an ecdysone response gene, can be mediated by both the USP3 and USP4 mutant proteins. USP3 and USP4 also activate an ecdysone-responsive element, hsp27EcRE, in cultured cells. These results differ from the protein null allele, usp2, which is unable to mediate activation [Schubiger, M. & Truman, J. W. (2000) Development 127, 1151–1159]. BrC-Z1 repression is compromised in all three usp alleles, suggesting that repression involves the association of USP with DNA. Our results distinguish two mechanisms by which USP modulates the properties of EcR: one that involves the USP DNA-binding domain and one that can be achieved solely through the ligand-binding domain. These newly revealed properties of USP might implicate similar properties for retinoid X receptor.
Resumo:
The homeotic genes controlling segment identity in Drosophila are repressed by the Polycomb group of genes (PcG) and are activated by genes of the trithorax group (trxG). An F1 screen for dominant enhancers of Polycomb yielded a point mutation in the heat shock cognate gene, hsc4, along with mutations corresponding to several known PcG loci. The new mutation is a more potent enhancer of Polycomb phenotypes than an apparent null allele of hsc4 is, although even the null allele occasionally displays homeotic phenotypes associated with the PcG. Previous biochemical results had suggested that HSC4 might interact with BRAHMA, a trxG member. Further analyses now show that there is no physical or genetic interaction between HSC4 and the Brahma complex. HSC4 might be needed for the proper folding of a component of the Polycomb repression complex, or it may be a functional member of that complex.
Resumo:
neuralized (neur) is a neurogenic mutant of Drosophila in which many signaling events mediated by the Notch (N) receptor are disrupted. Here, we analyze the role of neur during eye development. Neur is required in a cell-autonomous fashion to restrict R8 and other photoreceptor fates and is involved in lateral inhibition of interommatidial bristles but is not required for induction of the cone cell fate. The latter contrasts with the absolute requirement for Suppressor of Hairless and the Enhancer of split-Complex for cone cell induction. Using gain-of-function experiments, we further demonstrate that ectopic wild-type and truncated Neur proteins can interfere with multiple N-controlled aspects of eye development, including both neur-dependent and neur-independent processes.
Resumo:
The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a SWI/SNF-like chromatin-remodeling complex. A key question about chromatin-remodeling complexes is how they interact with DNA, particularly in the large genomes of higher eukaryotes. Here, we report the characterization of BAP111, a BRM-associated protein that contains a high mobility group (HMG) domain predicted to bind distorted or bent DNA. The presence of an HMG domain in BAP111 suggests that it may modulate interactions between the BRM complex and chromatin. BAP111 is an abundant nuclear protein that is present in all cells throughout development. By using gel filtration chromatography and immunoprecipitation assays, we found that the majority of BAP111 protein in embryos is associated with the BRM complex. Furthermore, heterozygosity for BAP111 enhanced the phenotypes resulting from a partial loss of brm function. These data demonstrate that the BAP111 subunit is important for BRM complex function in vivo.
Resumo:
There are at least three short-range gap repressors in the precellular Drosophila embryo: Krüppel, Knirps, and Giant. Krüppel and Knirps contain related repression motifs, PxDLSxH and PxDLSxK, respectively, which mediate interactions with the dCtBP corepressor protein. Here, we present evidence that Giant might also interact with dCtBP. The misexpression of Giant in ventral regions of transgenic embryos results in the selective repression of eve stripe 5. A stripe5-lacZ transgene exhibits an abnormal staining pattern in dCtBP mutants that is consistent with attenuated repression by Giant. The analysis of Gal4-Giant fusion proteins identified a minimal repression domain that contains a sequence motif, VLDLS, which is conserved in at least two other sequence-specific repressors. Removal of this sequence from the native Giant protein does not impair its repression activity in transgenic embryos. We propose that Giant-dCtBP interactions might be indirect and mediated by an unknown bZIP subunit that forms a heteromeric complex with Giant. We also suggest that the VLDLS motif recruits an as yet unidentified corepressor protein.
Resumo:
Chromosome-specific gene regulation is known thus far only as a mechanism to equalize the transcriptional activity of the single male X chromosome with that of the two female X chromosomes. In Drosophila melanogaster, a complex including the five Male-Specific Lethal (MSL) proteins, “paints” the male X chromosome, mediating its hypertranscription. Here, with the molecular cloning of Painting of fourth (Pof), we describe a previously uncharacterized gene encoding a chromosome-specific protein in Drosophila. Unlike the MSL proteins, POF paints an autosome, the fourth chromosome of Drosophila melanogaster. Chromosome translocation analysis shows that the binding depends on an initiation site in the proximal region of chromosome 4 and spreads in cis to involve the entire chromosome. The spreading depends on sequences or structures specific to chromosome 4 and cannot extend to parts of other chromosomes translocated to the fourth. Spreading can also occur in trans to a paired homologue that lacks the initiation region. In the related species Drosophila busckii, POF paints the entire X chromosome exclusively in males, suggesting relationships between the fourth chromosome and the X and between POF complexes and dosage-compensation complexes.
Resumo:
A suppressor mutation, D53, of the held-up2 allele of the Drosophila melanogaster Troponin I (wupA) gene is described. D53, a missense mutation, S185F, of the tropomyosin-2, Tm2, gene fully suppresses all the phenotypic effects of held-up2, including the destructive hypercontraction of the indirect flight muscles (IFMs), a lack of jumping, the progressive myopathy of the walking muscles, and reductions in larval crawling and feeding behavior. The suppressor restores normal function of the IFMs, but flight ability decreases with age and correlates with an unusual, progressive structural collapse of the myofibrillar lattice starting at the center. The S185F substitution in Tm2 is close to a troponin T binding site on tropomyosin. Models to explain suppression by D53, derived from current knowledge of the vertebrate troponin-tropomyosin complex structure and functions, are discussed. The effects of S185F are compared with those of two mutations in residues 175 and 180 of human α-tropomyosin 1 which cause familial hypertrophic cardiomyopathy (HCM).
Resumo:
Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2–Mob1, and Dbf2(S374A/T544A)–Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.