933 resultados para Driver Behaviour Questionnaire (DBQ)
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate the probabilistic risk assessment.
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate risk.
Resumo:
Previous research has indicated that road crashes are the most common form of work related fatalities (Haworth et al., 2000). Historically, industry has often taken a “silver bullet” approach developing and implementing a single countermeasure to address all their work related road safety issues, despite legislative requirements to discharge obligations through minimising risk and enhancing safety. This paper describes the results and implications from a series of work related road safety audits that were undertaken across five organisations to determine deficiencies in each organisation‟s safe driving management and practice. Researchers conducted a series of structured interviews, reviewed documentation relating to work related driving, and analysed vehicle related crash and incident records to determine each organisation‟s current situation in the management of work related road safety and driver behaviour. A number of consistent themes and issues across each organisation were identified relating to managing driver behaviour, organisational policies, incident recording and reporting, communication and education, and formalisation of key work related road safety strategies. Although organisations are required to undertake risk reduction strategies for all work related driving, the results of the research suggest that many organisations fail to systematically manage driver behaviour and mitigate work related road safety risk. Future improvements in work related road safety will require organisations to firstly acknowledge the high risk associated with drivers driving for work and secondly adopt comprehensive risk mitigation strategies in a similar manner to managing other workplace hazards.
Resumo:
Many governments throughout the world rely heavily on traffic law enforcement programs to modify driver behaviour and enhance road safety. There are two related functions of traffic law enforcement, apprehension and deterrence, and these are achieved through three processes: the establishment of traffic laws, the policing of those laws, and the application of penalties and sanctions to offenders. Traffic policing programs can vary by visibility (overt or covert) and deployment methods (scheduled and non-scheduled), while sanctions can serve to constrain, deter or reform offending behaviour. This chapter will review the effectiveness of traffic law enforcement strategies from the perspective of a range of high-risk, illegal driving behaviours including drink/drug driving, speeding, seat belt use and red light running. Additionally, this chapter discusses how traffic police are increasingly using technology to enforce traffic laws and thus reduce crashes. The chapter concludes that effective traffic policing involves a range of both overt and covert operations and includes a mix of automatic and more traditional manual enforcement methods. It is important to increase both the perceived and actual risk of detection by ensuring that traffic law enforcement operations are sufficiently intensive, unpredictable in nature and conducted as widely as possible across the road network. A key means of maintaining the unpredictability of operations is through the random deployment of enforcement and/or the random checking of drivers. The impact of traffic enforcement is also heightened when it is supported by public education campaigns. In the future, technological improvements will allow the use of more innovative enforcement strategies. Finally, further research is needed to continue the development of traffic policing approaches and address emerging road safety issues.
Resumo:
The purpose of traffic law enforcement is to encourage compliant driver behaviour. That is, the threat of an undesirable sanction encourages drivers to comply with traffic laws. However, not all traffic law violations are considered equal. For example, while drink driving is generally seen as socially unacceptable, behaviours such as speeding are arguably less so, and speed enforcement is often portrayed in the popular media as a means of “revenue raising”. The perceived legitimacy of traffic law enforcement has received limited research attention to date. Perceived legitimacy of traffic law enforcement may influence (or be influenced by) attitudes toward illegal driving behaviours, and both of these factors are likely to influence on-road driving behaviour. This study aimed to explore attitudes toward a number of illegal driving behaviours and traffic law enforcement approaches that typically target these behaviours using self-reported data from a large sample of drivers. The results of this research can be used to inform further research in this area, as well as the content of public education and advertising campaigns designed to influence attitudes toward illegal driving behaviours and perceived legitimacy of traffic law enforcement.
Resumo:
This paper reports on the development and implementation of a self-report risk assessment tool that was developed in an attempt to increase the efficacy of crash prediction within Australian fleet settings. This study forms a part of a broader program of research into work related road safety and identification of driving risk. The first phase of the study involved a series of focus groups being conducted with 217 professional drivers which revealed that the following factors were proposed to influence driving performance: Fatigue, Knowledge of risk, Mood, Impatience and frustration, Speed limits, Experience, Other road users, Passengers, Health, and Culture. The second phase of the study involved piloting the newly developed 38 item Driving Risk Assessment Scale - Work Version (DRAS-WV) with 546 professional drivers. Factor analytic techniques identified a 9 factor solution that was comprised of speeding, aggression, time pressure, distraction, casualness, awareness, maintenance, fatigue and minor damage. Speeding and aggressive driving manoeuvres were identified to be the most frequent aberrant driving behaviours engaged in by the sample. However, a series of logistic regression analyses undertaken to determine the DRAS-WV scale’s ability to predict self-reported crashes revealed limited predictive efficacy e.g., 10% of crashes. This paper outlines proposed reasons for this limited predictive ability of the DRAS-WV as well as provides suggestions regarding the future of research that aims to develop methods to identify “at risk” drivers.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.
Resumo:
Australian and international evidence suggests that, in the work-related driving context, road crashes account for a substantial number of occupational incidents. In the attempt to reduce injury and improve safety, organisations may implement an array of strategies and interventions ranging from policy development and implementation, vehicle selection and incident monitoring through to education and awareness-raising. This conceptual paper discusses aspects relating to the latter collection of interventions and, in particular, the role, and some key considerations with respect to the content and dissemination, of advertising campaigns and educational awareness workshops. In relation to advertising campaigns, this paper discusses how some of the overarching principles associated with advertising in the broader general community road safety strategy also apply within the work-related road safety context. Specifically, advertising campaigns/materials should be viewed as a key component within a dedicated organisational approach to road (driver) safety. This dedicated approach would need to comprise of a number, and varied array, of strategies. In addition, the content of, and medium/s (e.g., posters) by which to deliver such advertising campaigns, cannot be addressed by a one-size-fits all approach but, rather, requires careful consideration of the needs as well as characteristics of specific organisations and their driver fleet. The paper provides a summary of some key considerations when devising an advertising campaign, including the nature of campaign/message content as well as the processes by which to devise and refine such content. In relation to driver education awareness workshops, this paper outlines the key considerations for delivering a series of workshops specifically aimed at occupational driving within the organisational context. A case study approach will be utilised to demonstrate the manner in which educational awareness workshops can compliment successful advertising campaigns promoting safer work related driving through better risk management practice. Research underpinning the development of driver behaviour modification tools incorporated within the workshops will also be discussed along with the mechanisms utilised to encourage improvements in driver monitoring and behaviour. In an effort to assist organisations with their continual search for cost-effective approaches which may, ultimately, contribute to improvements in driver behaviour and safety, the current paper offers some clear and practical suggestions in relation to the development and dissemination of two types of interventions, advertising campaigns and education awareness workshops.
Resumo:
This thesis highlights the limitations of the existing car following models to emulate driver behaviour for safety study purposes. It also compares the capabilities of the mainstream car following models emulating driver behaviour precise parameters such as headways and Time to Collisions. The comparison evaluates the robustness of each car following model for safety metric reproductions. A new car following model, based on the personal space concept and fish school model is proposed to simulate more precise traffic metrics. This new model is capable of reflecting changes in the headway distribution after imposing the speed limit form VSL systems. This research facilitates assessing Intelligent Transportation Systems on motorways, using microscopic simulation.
Resumo:
This paper assesses Intelligent Transportation Systems (ITS) to identify safety systems that are most likely to reduce driver errors at railway crossings. ITS technologies have been integrated in order to develop improved evaluation tools to reduce crashes at railway crossings. Although emerging technologies, knowledge, innovative interventions have been introduced to change driver behaviour, there is a lack of research on the impact of integrating ITS technologies and transportation simulation on drivers. The outcomes of ITS technologies for complementing traditional signage were compared with those of current safety systems (passive and active) at railway crossings. Three ITS technologies are compared with current treatments, in terms of compliance rate and vehicle speed profiles. It is found that ITS technologies improve compliance rate by 17~30% and also encourage drivers to slow down earlier compared to current passive and active crossings when there is a train approaching the railway crossings.
On-road driving studies to understand why drivers behave as they do at regional rail level crossings
Resumo:
Improving safety at rail level crossings is an important part of both road and rail safety strategies. While low in number, crashes between vehicles and trains at level crossings are catastrophic events typically involving multiple fatalities and serious injuries. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles with eye and head tracking, provide researchers with the opportunity to further understand driver behaviour at such crossings in ways not previously possible. This paper describes a study conducted to further understand the factors that shape driver behaviour at rail level crossings using instrumented vehicles. Twenty-two participants drove an On-Road Test Vehicle (ORTeV) on a predefined route in regional Victoria with a mix of both active (flashing lights with/without boom barriers) and passively controlled (stop, give way) crossings. Data collected included driving performance data, head checks, and interview data to capture driver strategies. The data from an integrated suite of methods demonstrated clearly how behaviour differs at active and passive level crossings, particularly for inexperienced drivers. For example, the head check data clearly show the reliance and expectancies of inexperienced drivers for active warnings even when approaching passively controlled crossings. These studies provide very novel and unique insights into how level crossing design and warnings shape driver behaviour.
Resumo:
Introduction Road safety researchers rely heavily on self-report data to explore the aetiology of crash risk. However, researchers consistently acknowledge a range of limitations associated with this methodological approach (e.g., self-report bias), which has been hypothesised to reduce the predictive efficacy of scales. Although well researched in other areas, one important factor often neglected in road safety studies is the fallibility of human memory. Given accurate recall is a key assumption in many studies, the validity and consistency of self-report data warrants investigation. The aim of the current study was to examine the consistency of self-report data of crash history and details of the most recent reported crash on two separate occasions. Materials & Method A repeated measures design was utilised to examine the self-reported crash involvement history of 214 general motorists over a two month period. Results A number of interesting discrepancies were noted in relation to number of lifetime crashes reported by the participants and the descriptions of their most recent crash across the two occasions. Of the 214 participants who reported having been involved in a crash, 35 (22.3%) reported a lower number of lifetime crashes as Time 2, than at Time 1. Of the 88 drivers who reported no change in number of lifetime crashes, 10 (11.4%) described a different most recent crash. Additionally, of the 34 reporting an increase in the number of lifetime crashes, 29 (85.3%) of these described the same crash on both occasions. Assessed as a whole, at least 47.1% of participants made a confirmed mistake at Time 1 or Time 2. Conclusions These results raise some doubt in regard to the accuracy of memory recall across time. Given that self-reported crash involvement is the predominant dependent variable used in the majority of road safety research, this issue warrants further investigation. Replication of the study with a larger sample size that includes multiple recall periods would enhance understanding into the significance of this issue for road safety methodology.
Resumo:
Collisions between distinct road users (e.g. drivers and motorcyclists) make a substantial contribution to the road trauma burden. Although evidence suggests distinct road users interpret the same road situations differently, it is not clear how road users’ situation awareness differs, nor is it clear which differences might lead to conflicts. This article presents the findings from an on-road study which examined driver, cyclist, motorcyclist and pedestrian situation awareness at intersections. The findings suggest that situation awareness at intersection is markedly different across the four road user groups studied, and that some of these differences may create conflicts between the different road users. The findings also suggest that the causes of the differences identified relate to road design and road user experience. In closing, the key role of road design and training in supporting safe interactions between distinct road users is discussed.