988 resultados para Dose intensity
Resumo:
In external beam radiotherapy, electronic portal imaging becomes more and more an indispensable tool for the verification of the patient setup. For the safe clinical introduction of high dose conformal radiotherapy like intensity modulated radiation therapy, on-line patient setup verification is a prerequisite to ensure that the planned dosimetric coverage of the tumor volume is actually realized in the patient. Since the direction of setup fields often deviates from the direction of the treatment beams, extra dose is delivered to the patient during the acquisition of these portal images which may reach clinical relevance. The aim of this work was to develop a new acquisition mode for the PortalVision aS500 electronic portal imaging device from Varian Medical Systems that allows one to take portal images with reduced dose while keeping good image quality. The new acquisition mode, called RadMode, selectively enables and disables beam pulses during image acquisition allowing one to stop wasting valuable dose during the initial acquisition of "reset frames." Images of excellent quality can be taken with 1 MU only. This low dose per image facilitates daily setup verification with considerably reduced extra dose.
Resumo:
The aim was to investigate the efficacy of a combination of low-dose remifentanil (REMI) and ketamine (KET) compared to the single drugs and placebo (P) on whiplash associated pain (WAD) in a double-blind, randomized, placebo-controlled, cross-over study. Twenty patients with chronic (>1 year) WAD were included. Four different drug combinations were tested in four sessions: placebo/placebo (P/P), placebo/remifentanil (P/REMI), ketamine/placebo (KET/P) and ketamine/remifentanil (KET/REMI). Target concentrations were 1 and 2ng/ml (stepwise) for remifentanil and 100ng/ml for ketamine. Habitual pain intensity was assessed on a visual analogue scale (VAS). Experimental pain was assessed with electrical stimulation (single and repeated) of tibialis anterior (TA) muscle, pressure pain algometry applied over infraspinatus (IS) and TA muscles and VAS scores after intramuscular hypertonic saline infusion in TA. KET/REMI significantly reduced habitual pain. KET/REMI infused at low REMI target concentration (1ng/ml) significantly elevated electrical intramuscular pain thresholds (single and repeated). Pain thresholds to electrical stimulation were similarly increased by both P/REMI and KET/REMI at 2ng/ml target concentration. Pressure pain thresholds were increased by both KET/REMI and P/REMI. VAS-scores after intramuscular saline were also similarly decreased by both REMI combinations. Seven out of 20 subjects were non-responders (<50% pain relief). No correlation was found between effects on spontaneous pain and experimental pain. KET/REMI showed an analgesic effect on habitual pain. Experimental pain was attenuated by both combinations containing the opioid, however, KET seemed to enhance the effect of REMI on electrical pain thresholds when a low REMI target concentration was used.
Resumo:
The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.
Resumo:
PURPOSE Different international target volume delineation guidelines exist and different treatment techniques are available for salvage radiation therapy (RT) for recurrent prostate cancer, but less is known regarding their respective applicability in clinical practice. METHODS AND MATERIALS A randomized phase III trial testing 64 Gy vs 70 Gy salvage RT was accompanied by an intense quality assurance program including a site-specific and study-specific questionnaire and a dummy run (DR). Target volume delineation was performed according to the European Organisation for the Research and Treatment of Cancer guidelines, and a DR-based treatment plan was established for 70 Gy. Major and minor protocol deviations were noted, interobserver agreement of delineated target contours was assessed, and dose-volume histogram (DVH) parameters of different treatment techniques were compared. RESULTS Thirty European centers participated, 43% of which were using 3-dimensional conformal RT (3D-CRT), with the remaining centers using intensity modulated RT (IMRT) or volumetric modulated arc technique (VMAT). The first submitted version of the DR contained major deviations in 21 of 30 (70%) centers, mostly caused by inappropriately defined or lack of prostate bed (PB). All but 5 centers completed the DR successfully with their second submitted version. The interobserver agreement of the PB was moderate and was improved by the DR review, as indicated by an increased κ value (0.59 vs 0.55), mean sensitivity (0.64 vs 0.58), volume of total agreement (3.9 vs 3.3 cm(3)), and decrease in the union volume (79.3 vs 84.2 cm(3)). Rectal and bladder wall DVH parameters of IMRT and VMAT vs 3D-CRT plans were not significantly different. CONCLUSIONS The interobserver agreement of PB delineation was moderate but was improved by the DR. Major deviations could be identified for the majority of centers. The DR has improved the acquaintance of the participating centers with the trial protocol.
Resumo:
The motion of lung tumors during respiration makes the accurate delivery of radiation therapy to the thorax difficult because it increases the uncertainty of target position. The adoption of four-dimensional computed tomography (4D-CT) has allowed us to determine how a tumor moves with respiration for each individual patient. Using information acquired during a 4D-CT scan, we can define the target, visualize motion, and calculate dose during the planning phase of the radiotherapy process. One image data set that can be created from the 4D-CT acquisition is the maximum-intensity projection (MIP). The MIP can be used as a starting point to define the volume that encompasses the motion envelope of the moving gross target volume (GTV). Because of the close relationship that exists between the MIP and the final target volume, we investigated four MIP data sets created with different methodologies (3 using various 4D-CT sorting implementations, and one using all available cine CT images) to compare target delineation. It has been observed that changing the 4D-CT sorting method will lead to the selection of a different collection of images; however, the clinical implications of changing the constituent images on the resultant MIP data set are not clear. There has not been a comprehensive study that compares target delineation based on different 4D-CT sorting methodologies in a patient population. We selected a collection of patients who had previously undergone thoracic 4D-CT scans at our institution, and who had lung tumors that moved at least 1 cm. We then generated the four MIP data sets and automatically contoured the target volumes. In doing so, we identified cases in which the MIP generated from a 4D-CT sorting process under-represented the motion envelope of the target volume by more than 10% than when measured on the MIP generated from all of the cine CT images. The 4D-CT methods suffered from duplicate image selection and might not choose maximum extent images. Based on our results, we suggest utilization of a MIP generated from the full cine CT data set to ensure a representative inclusive tumor extent, and to avoid geometric miss.
Resumo:
Introduction Commercial treatment planning systems employ a variety of dose calculation algorithms to plan and predict the dose distributions a patient receives during external beam radiation therapy. Traditionally, the Radiological Physics Center has relied on measurements to assure that institutions participating in the National Cancer Institute sponsored clinical trials administer radiation in doses that are clinically comparable to those of other participating institutions. To complement the effort of the RPC, an independent dose calculation tool needs to be developed that will enable a generic method to determine patient dose distributions in three dimensions and to perform retrospective analysis of radiation delivered to patients who enrolled in past clinical trials. Methods A multi-source model representing output for Varian 6 MV and 10 MV photon beams was developed and evaluated. The Monte Carlo algorithm, know as the Dose Planning Method (DPM), was used to perform the dose calculations. The dose calculations were compared to measurements made in a water phantom and in anthropomorphic phantoms. Intensity modulated radiation therapy and stereotactic body radiation therapy techniques were used with the anthropomorphic phantoms. Finally, past patient treatment plans were selected and recalculated using DPM and contrasted against a commercial dose calculation algorithm. Results The multi-source model was validated for the Varian 6 MV and 10 MV photon beams. The benchmark evaluations demonstrated the ability of the model to accurately calculate dose for the Varian 6 MV and the Varian 10 MV source models. The patient calculations proved that the model was reproducible in determining dose under similar conditions described by the benchmark tests. Conclusions The dose calculation tool that relied on a multi-source model approach and used the DPM code to calculate dose was developed, validated, and benchmarked for the Varian 6 MV and 10 MV photon beams. Several patient dose distributions were contrasted against a commercial algorithm to provide a proof of principal to use as an application in monitoring clinical trial activity.
Resumo:
PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.
Resumo:
BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
Resumo:
Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.
Resumo:
Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.
Resumo:
PurposeTo assess clinical outcomes and patterns of loco-regional failure (LRF) in relation to clinical target volumes (CTV) in patients with locally advanced hypopharyngeal and laryngeal squamous cell carcinoma (HL-SCC) treated with definitive intensity modulated radiotherapy (IMRT) and concurrent systemic therapy.MethodsData from HL-SCC patients treated from 2007 to 2010 were retrospectively evaluated. Primary endpoint was loco-regional control (LRC). Secondary endpoints included local (LC) and regional (RC) controls, distant metastasis free survival (DMFS), laryngectomy free survival (LFS), overall survival (OS), and acute and late toxicities. Time-to-event endpoints were estimated using Kaplan-Meier method, and univariate and multivariate analyses were performed using Cox proportional hazards models. Recurrent gross tumor volume (RTV) on post-treatment diagnostic imaging was analyzed in relation to corresponding CTV (in-volume, > 95% of RTV inside CTV; marginal, 20¿95% inside CTV; out-volume, < 20% inside CTV).ResultsFifty patients (stage III: 14, IVa: 33, IVb: 3) completed treatment and were included in the analysis (median follow-up of 4.2 years). Three-year LRC, DMFS and overall survival (OS) were 77%, 96% and 63%, respectively. Grade 2 and 3 acute toxicity were 38% and 62%, respectively; grade 2 and 3 late toxicity were 23% and 15%, respectively. We identified 10 patients with LRF (8 local, 1 regional, 1 local¿+¿regional). Six out of 10 RTVs were fully included in both elective and high-dose CTVs, and 4 RTVs were marginal to the high-dose CTVs.ConclusionThe treatment of locally advanced HL-SCC with definitive IMRT and concurrent systemic therapy provides good LRC rates with acceptable toxicity profile. Nevertheless, the analysis of LRFs in relation to CTVs showed in-volume relapses to be the major mode of recurrence indicating that novel strategies to overcome radioresistance are required.
Resumo:
PURPOSE Patients with biochemical failure (BF) after radical prostatectomy may benefit from dose-intensified salvage radiation therapy (SRT) of the prostate bed. We performed a randomized phase III trial assessing dose intensification. PATIENTS AND METHODS Patients with BF but without evidence of macroscopic disease were randomly assigned to either 64 or 70 Gy. Three-dimensional conformal radiation therapy or intensity-modulated radiation therapy/rotational techniques were used. The primary end point was freedom from BF. Secondary end points were acute toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) and quality of life (QoL) according to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and PR25. RESULTS Three hundred fifty patients were enrolled between February 2011 and April 2014. Three patients withdrew informed consent, and three patients were not eligible, resulting in 344 patients age 48 to 75 years in the safety population. Thirty patients (8.7%) had grade 2 and two patients (0.6%) had grade 3 genitourinary (GU) baseline symptoms. Acute grade 2 and 3 GU toxicity was observed in 22 patients (13.0%) and one patient (0.6%), respectively, with 64 Gy and in 29 patients (16.6%) and three patients (1.7%), respectively, with 70 Gy (P = .2). Baseline grade 2 GI toxicity was observed in one patient (0.6%). Acute grade 2 and 3 GI toxicity was observed in 27 patients (16.0%) and one patient (0.6%), respectively, with 64 Gy, and in 27 patients (15.4%) and four patients (2.3%), respectively, with 70 Gy (P = .8). Changes in early QoL were minor. Patients receiving 70 Gy reported a more pronounced and clinically relevant worsening in urinary symptoms (mean difference in change score between arms, 3.6; P = .02). CONCLUSION Dose-intensified SRT was associated with low rates of acute grade 2 and 3 GU and GI toxicity. The impact of dose-intensified SRT on QoL was minor, except for a significantly greater worsening in urinary symptoms.
Resumo:
The purpose of this work was to develop a comprehensive IMSRT QA procedure that examined, using EPID dosimetry and Monte Carlo (MC) calculations, each step in the treatment planning and delivery process. These steps included verification of the field shaping, treatment planning system (RTPS) dose calculations, and patient dose delivery. Verification of each step in the treatment process is assumed to result in correct dose delivery to the patient. ^ The accelerator MC model was verified against commissioning data for field sizes from 0.8 × 0.8 cm 2 to 10 × 10 cm 2. Depth doses were within 2% local percent difference (LPD) in low gradient regions and 1 mm distance to agreement (DTA) in high gradient regions. Lateral profiles were within 2% LPD in low gradient regions and 1 mm DTA in high gradient regions. Calculated output factors were within 1% of measurement for field sizes ≥1 × 1 cm2. ^ The measured and calculated pretreatment EPID dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Pretreatment field verification resulted in 97% percent of the points passing. ^ The RTPS and Monte Carlo phantom dose calculations were compared using 5% LPD, 2 mm DTA, or 2% of the maximum dose with ≥95% of compared points required passing for successful verification. RTPS calculation verification resulted in 97% percent of the points passing. ^ The measured and calculated EPID exit dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Exit dose verification resulted in 97% percent of the points passing. ^ Each of the processes above verified an individual step in the treatment planning and delivery process. The combination of these verification steps ensures accurate treatment delivery to the patient. This work shows that Monte Carlo calculations and EPID dosimetry can be used to quantitatively verify IMSRT treatments resulting in improved patient care and, potentially, improved clinical outcome. ^
Resumo:
Uveal melanoma is a rare but life-threatening form of ocular cancer. Contemporary treatment techniques include proton therapy, which enables conservation of the eye and its useful vision. Dose to the proximal structures is widely believed to play a role in treatment side effects, therefore, reliable dose estimates are required for properly evaluating the therapeutic value and complication risk of treatment plans. Unfortunately, current simplistic dose calculation algorithms can result in errors of up to 30% in the proximal region. In addition, they lack predictive methods for absolute dose per monitor unit (D/MU) values. ^ To facilitate more accurate dose predictions, a Monte Carlo model of an ocular proton nozzle was created and benchmarked against measured dose profiles to within ±3% or ±0.5 mm and D/MU values to within ±3%. The benchmarked Monte Carlo model was used to develop and validate a new broad beam dose algorithm that included the influence of edgescattered protons on the cross-field intensity profile, the effect of energy straggling in the distal portion of poly-energetic beams, and the proton fluence loss as a function of residual range. Generally, the analytical algorithm predicted relative dose distributions that were within ±3% or ±0.5 mm and absolute D/MU values that were within ±3% of Monte Carlo calculations. Slightly larger dose differences were observed at depths less than 7 mm, an effect attributed to the dose contributions of edge-scattered protons. Additional comparisons of Monte Carlo and broad beam dose predictions were made in a detailed eye model developed in this work, with generally similar findings. ^ Monte Carlo was shown to be an excellent predictor of the measured dose profiles and D/MU values and a valuable tool for developing and validating a broad beam dose algorithm for ocular proton therapy. The more detailed physics modeling by the Monte Carlo and broad beam dose algorithms represent an improvement in the accuracy of relative dose predictions over current techniques, and they provide absolute dose predictions. It is anticipated these improvements can be used to develop treatment strategies that reduce the incidence or severity of treatment complications by sparing normal tissue. ^
Resumo:
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^