963 resultados para Dopamine Antagonists


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depressed pregnant women (N=126) were divided into high and low prenatal maternal dopamine (HVA) groups based on a tertile split on their dopamine levels at 20 weeks gestation. The high versus the low dopamine group had lower Center for Epidemiological Studies-Depression Scale (CES-D) scores, higher norepinephrine levels at the 20-week gestational age visit and higher dopamine and serotonin levels at both the 20- and the 32-week gestational age visits. The neonates of the mothers with high versus low prenatal dopamine levels also had higher dopamine and serotonin levels as well as lower cortisol levels. Finally, the neonates in the high dopamine group had better autonomic stability and excitability scores on the Brazelton Neonatal Behavior Assessment Scale. Thus, prenatal maternal dopamine levels appear to be negatively related to prenatal depression scores and positively related to neonatal dopamine and behavioral regulation, although these effects are confounded by elevated serotonin levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recenty studied several natural product constituents which have effects on the CNS. (1) Tetrahydropalmatine (THP) and its analogues were isolated from Corydalis ambigua and various species of Stephania. (+)-THP and (-)-THP posses not only analgesic activity, but also exert sedative-tranquillizing and hypnotic actions. Results of receptor binding assay and their pre-and post-synaptic effects on dopaminergic system indicate that (-)-THP and (-)-stepholidine are dopamine receptor antagonists while (+)-THP is a selective dopamine depletor. (2) 3-Acetylaconitine (AAC) is an alkaloid isolated from Aconitum flavum. The relative potency of analgesic action of AAC was 5.1-35.6 and 1250-3912 times that of morphine and aspirin, respectively. The analgesic effect of AAC was antagonized by naloxone, but was eliminated by reserpine. In monkeys, after AAC was injected for 92 days, no abstinence syndrome was seen after sudden AAC withdrawal or when challenged with nalorphine. (3) Huperzine A (Hup-A) is an alkaloid isolated from Huperzia serrata which was found to be a selective ChE inhibitor and could improve learning and retrieval process. Preliminary clinical studies showed that Hup-A improve short-and long-term memory in patients of cerebral arteriosclerosis with memory impairment. (4) Ranamargarin is a new tetradecapeptide isolated from the skin of the Chines frog Rana margaratae. This peptide may mainly act on NK-1 receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin (BK) a nonapeptide generated in plasma during tissue injury, is involved in many physiological and pathological states. Kinin actions are mediated by specific membrane receptors and involve a complex signal transducer and also second messager mechanisms. Due to its inequivocal relevance, an intensive effort has been focused in recent years to develop selective and competitive BK antagonists. Thus, the development of a new series of peptide BK antagonists has made an important contribution to the understanding of the pharmacological, physiological and pathophysiological role of BK, and this is certain to provide a firm basis for developing new drugs to relieve pain and inflammation. However, BK antagonists derived from peptide origin reported to date have limited clinical use due to their poor oral absortion and short duration of effect. Thus, considerable effort has also been made in developing stable nonpeptide BK antagonists. Up to now, most nonpeptide compounds reported to exhibit BK antagonistic activity have been derived from plants, including many flavonoids, terpenes, and also synthetic substances with various molecular structures. Amongst them, the pregnane glycoside compounds isolated from the plant Mandevilla velutina are the most promising. These compounds are effective in antognizing BK responses in a variety of preparations, and they also exhibit potent and long-lasting analgesic and anti-inflammatory activities. The exact mechanism underlying their action however, is not yet completely understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta with unknown aetiology. 6-Hydroxydopamine (6-OHDA) treatment of neuronal cells is an established in vivo model for mimicking the effect of oxidative stress found in PD brains. We examined the effects of 6-OHDA treatment on human neuroblastoma cells (SH-SY5Y) and primary mesencephalic cultures. Using a reverse arbitrarily primed polymerase chain reaction (RAP-PCR) approach we generated reproducible genetic fingerprints of differential expression levels in cell cultures treated with 6-OHDA. Of the resulting sequences, 23 showed considerable homology to known human coding sequences. The results of the RAP-PCR were validated by reverse transcription PCR, real-time PCR and, for selected genes, by Western blot analysis and immunofluorescence. In four cases, [tomoregulin-1 (TMEFF-1), collapsin response mediator protein 1 (CRMP-1), neurexin-1, and phosphoribosylaminoimidazole synthetase (GART)], a down-regulation of mRNA and protein levels was detected. Further studies will be necessary on the physiological role of the identified proteins and their impact on pathways leading to neurodegeneration in PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://resfranco.cochrane.org/sites/resfranco.cochrane.org/files/uploads/Arrettabac2009.pdf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Clinical research in the field of hypertension is now increasingly focusing on the potential effects of antihypertensive treatments that may go beyond the reduction of blood pressure (BP). In particular, renal protection appears as a desirable goal, especially considering that hypertension is associated with an increased risk of developing kidney damage, which may eventually lead to end-stage renal disease and a higher mortality. Dihydropyridine calcium channel blockers (CCBs) are widely used in the field of hypertension therapy but the different renal effects of the various CCBs have been poorly explored to date. Scope: This review will discuss available evidence on the renal effects of two calcium channel blockers: amlodipine and lercanidipine, on the basis of clinical data. Methods: MEDLINE and EMBASE were searched for inclusion of relevant studies. No limitations in time were considered. Results: Results from preclinical and clinical studies suggest that amlodipine is overall less effective in terms of renal protection when compared with other antihypertensive tested agents. Its beneficial effect in retarding the progression of renal disease is achievable only when combined with a blocker of the renin-angiotensin system. Conversely lercanidipine seems to provide renal protection in a similar way to ACE inhibitors, probably thanks to its mechanism of action which acts directly on the afferent and efferent renal arterioles. Conclusions: Treatment of hypertension with CCBs should take into consideration the special effects of each single agent at different levels; lercanidipine for example may play a useful role in the management not only of hypertension but also in renal protection of hypertensive patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. METHODS: The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. RESULTS: The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. CONCLUSION: We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr.