945 resultados para Dominant Retinitis-pigmentosa
Resumo:
Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons.
Resumo:
PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.
METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.
RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.
CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.
Resumo:
PURPOSE: Subjects with significant peripheral field loss (PFL) self report difficulty in street crossing. In this study, we compared the traffic gap judgment ability of fully sighted and PFL subjects to determine whether accuracy in identifying crossable gaps was adversely affected because of field loss. Moreover, we explored the contribution of visual and nonvisual factors to traffic gap judgment ability. METHODS: Eight subjects with significant PFL as a result of advanced retinitis pigmentosa or glaucoma with binocular visual field <20 degrees and five age-matched normals (NV) were recruited. All subjects were required to judge when they perceived it was safe to cross at a 2-way 4-lane street while they stood on the curb. Eye movements were recorded by an eye tracker as the subjects performed the decision task. Movies of the eye-on-scene were made offline and fixation patterns were classified into either relevant or irrelevant. Subjects' street-crossing behavior, habitual approach to street crossing, and perceived difficulties were assessed. RESULTS: Compared with normal vision (NV) subjects, the PFL subjects identified 12% fewer crossable gaps while making 23% more errors by identifying a gap as crossable when it was too short (p < 0.05). The differences in traffic gap judgment ability of the PFL subjects might be explained by the significantly smaller fixation area (p = 0.006) and fewer fixations distributed to the relevant tasks (p = 0.001). The subjects' habitual approach to street crossing and perceived difficulties in street crossing (r > 0.60) were significantly correlated with traffic gap judgment performance. CONCLUSIONS: As a consequence of significant field loss, limited visual information about the traffic environment can be acquired, resulting in significantly reduced performance in judging safe crossable gaps. This poor traffic gap judgment ability in the PFL subjects raises important concerns for their safety when attempting to cross the street.
Resumo:
La complexité de l’étude des neuropathies héréditaires provient de leur hétérogénéité clinique et génétique et de la diversité des fibres composant les nerfs périphériques. Cette complexité se reflète dans les nombreuses classifications différentes. Les neuropathies héréditaires se classifient entre autres selon leur mode de transmission et leur atteinte sensitive, autonomique et motrice. Les neuropathies héréditaires sensitives et autonomiques (NHSA) se présentent avec une perte de la sensation distale aux membres, accompagnée d’autres manifestations selon le type de NHSA. L’étude des NHSA est facilitée lorsqu’il existe des grappes de familles originaires de régions du Québec où des effets fondateurs pour des maladies récessives ont déjà été identifiés. Nous avons recruté une grande famille canadienne-française originaire de Paspébiac dans la Baie-des-Chaleurs dans laquelle nous avons identifié quatre cas atteints d’une neuropathie héréditaire sensitive avec rétinite pigmentaire et ataxie (NHSRPA). Nous avons émis l’hypothèse que nous étions en présence d’une nouvelle forme de neuropathie héréditaire sensitive récessive à effet fondateur. Afin d’identifier la position chromosomique du gène muté responsable de la NHSRPA, nous avons tout d’abord complété un criblage du génome en génotypant des marqueurs microsatellites «single tandem repeat» (STR) sur des individus clés et nous avons ensuite procédé à une analyse de liaison génétique paramétrique. Ces études nous ont permis de lier cette famille au chromosome 1 et de définir un premier intervalle candidat de 6,7 Mb. Grâce à un génotypage de marqueurs «single nucleotide polymorphism» (SNP), nous avons réduit l’intervalle candidat à 5,3 Mb au locus 1q32,2-q32,3. Cette région contient 44 gènes candidats. Une revue plus fine de la littérature a fait ressortir qu’une famille espagnole et une américaine de souche hollandaise souffrant de la même maladie avaient déjà été liées au même locus. L’origine possiblement basque de notre famille gaspésienne nous a poussé à comparer l’haplotype porteur avec celui de la famille espagnole qui, quoi que gitane, provient du pays basque espagnol. Ces travaux ont démontré le partage d’une région de 203 kb. Afin de rétrécir davantage notre intervalle candidat, nous avons comparé les haplotypes des cas entre les deux familles et nous avons identifié un dernier intervalle candidat de 60 SNP au locus 1q32,3. Cette région ne contient que quatre gènes candidats dont le plus intéressant est le gène «activating transcription factor» (ATF3). À ce jour, aucune mutation n’a été trouvée dans le gène ATF3 et les gènes FAM71A, BATF3 et NSL1. Des expériences supplémentaires sont nécessaires afin d’identifier le gène muté responsable de la NHSRPA.
Resumo:
O fator de crescimento do nervo (NGF) pode retardar a degeneração celular na retina de ratos em diferentes injúrias retinianas. O acúmulo de água em células da retina contribui para o desenvolvimento de edema retiniano e degeneração neuronal. Em atribuição ao seu efeito protetor, este trabalho teve por objetivo avaliar se o NGF influencia o edema celular osmótico em células de Müller e células bipolares. Assim, montagens planas, fatias de retina e células isoladas da retina de ratos foram superfundidas com solução hipo-osmótica na presença de BaCl2. Secções retinianas foram utilizadas para imunomarcações, e a liberação de adenosina foi medida por cromatografia líquida de alta eficácia, em montagens planas. A área de secção transversal celular foi medida antes e após a superfusão em meio hipo-osmótico, em fatias de retina e suspensões celulares. Tanto células de Müller quanto células bipolares foram imunopositivas para TrkA, mas somente células de Müller foram marcadas contra p75NTR e NGF. A hipo-osmolaridade induziu um rápido e significativo aumento da liberação de adenosina endógena em retinas controle, mas não em retinas perfundidas com BaCl2. O NGF inibiu o edema citotóxico em células de Müller e em células bipolares em fatias de retina controle e retinas pós-isquêmicas submetidas a condições hipo-osmóticas. Por outro lado, NGF impediu o edema citotóxico da célula de Müller isolada, mas não da célula bipolar isolada (em meio hipo-osmótico contendo íons Ba2+). Isto sugere que NGF induz a liberação de fatores por células de Müller, os quais inibem o edema citotóxico de células bipolares em fatias de retina. O efeito inibitório do NGF sobre o edema citotóxico de células de Müller foi mediado pela ativação do receptor TrkA, mas não de p75NTR, e foi anulado por bloqueadores de receptores metabotrópicos de glutamato, receptores de adenosina A1, e receptores do fator de crescimento de fibroblasto (FGF). O bFGF evitou o edema citotóxico de células de Müller isoladas, mas inibiu somente em parte o edema citotóxico de células bipolares isoladas. O bloqueio de FGFR impediu o efeito inibidor de edema celular da adenosina, sugerindo que a liberação de bFGF ocorre após à ativação autócrina/parácrina de receptores Al. Além de bFGF, GDNF e TGF431 reduziram em parte o edema citotóxico da célula bipolar. Estes dados sugerem que o efeito neuroprotetor do NGF é em parte mediado pela prevenção de edema citotóxico de células gliais e bipolares da retina.
Resumo:
PURPOSE. To better understand the relative contributions of rod, cone, and melanopsin to the human pupillary light reflex (PLR) and to determine the optimal conditions for assessing the health of the rod, cone, and melanopsin pathways with a relatively brief clinical protocol. METHODS. PLR was measured with an eye tracker, and stimuli were controlled with a Ganzfeld system. In experiment 1, 2.5 log cd/m(2) red (640 +/- 10 nm) and blue (467 +/- 17 nm) stimuli of various durations were presented after dark adaptation. In experiments 2 and 3, 1-second red and blue stimuli were presented at different intensity levels in the dark (experiment 2) or on a 0.78 log cd/m(2) blue background (experiment 3). Based on the results of experiments 1 to 3, a clinical protocol was designed and tested on healthy control subjects and patients with retinitis pigmentosa and Leber`s congenital amaurosis. RESULTS. The duration for producing the optimal melanopsin-driven sustained pupil response after termination of an intense blue stimulus was 1 second. PLR rod-and melanopsin-driven components are best studied with low-and high-intensity flashes, respectively, presented in the dark (experiment 2). A blue background suppressed rod and melanopsin responses, making it easy to assess the cone contribution with a red flash (experiment 3). With the clinical protocol, robust melanopsin responses could be seen in patients with few or no contributions from the rods and cones. CONCLUSIONS. It is possible to assess the rod, cone, and melanopsin contributions to the PLR with blue flashes at two or three intensity levels in the dark and one red flash on a blue background. (Invest Ophthalmol Vis Sci. 2011; 52: 6624-6635) DOI: 10.1167/iovs.11-7586
Resumo:
PURPOSE. To evaluate electrically evoked phosphene thresholds (EPTs) in healthy subjects and in patients with retinal disease and to assess repeatability and possible correlations with common ophthalmologic tests. METHODS. In all, 117 individuals participated: healthy subjects (n = 20) and patients with retinitis pigmentosa (RP, n = 30), Stargardt's disease (STG, n = 14), retinal artery occlusion (RAO, n = 20), nonarteritic anterior ischemic optic neuropathy (NAION, n = 16), and primary open-angle glaucoma (POAG, n = 17). EPTs were determined at 3, 6, 9, 20, 40, 60, and 80 Hz with 5+5-ms biphasic current pulses using DTL electrodes. Subjects were examined twice (test-retest range: 1-6 weeks). An empirical model was developed to describe the current-frequency relationship of EPTs. Visual acuity, visual field (kinetic + static), electrophysiology (RP, RAO, STG: Ganzfeld-electroretinography [ERG]/multifocal-ERG; POAG: pattern-ERG; NAION: VEP), slit-lamp biomicroscopy, fundus examination, and tonometry were assessed. RESULTS. EPTs varied between disease groups (20 Hz: healthy subjects: 0.062 +/- 0.038 mA; STG: 0.102 +/- 0.097 mA; POAG: 0.127 +/- 0.09 mA; NAION: 0.244 +/- 0.126 mA; RP: 0.371 +/- 0.223 mA; RAO: 0.988 +/- 1.142 mA). In all groups EPTs were lowest at 20 Hz. In patients with retinal diseases and across all frequencies EPTs were significantly higher than those in healthy subjects, except in STG at 20 Hz (P = 0.09) and 40 Hz (P = 0.17). Test-retest difference at 20 Hz was 0.006 mA in the healthy group and 0.003-0.04 mA in disease groups. CONCLUSIONS. Considering the fast, safe, and reliable practicability of EPT testing, this test might be used more often under clinical circumstances. Determination of EPTs could be potentially useful in elucidation of the progress of ophthalmologic diseases, either in addition to standard clinical assessment or under conditions in which these standard tests cannot be used meaningfully. (ClinicalTrials.gov number, NCT00804102.) (Invest Ophthalmol Vis Sci. 2012; 53: 7440-7448) DOI:10.1167/iovs.12-9612
Resumo:
To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.
Resumo:
PURPOSE. To examine the effects of transcorneal electrical stimulation (TES) on retinal degeneration of light-exposed rats. METHODS. Thirty-three Sprague Dawley albino rats were divided into three groups: STIM (n = 15) received 60 minutes of TES, whereas SHAM (n = 15) received identical sham stimulation 2 hours before exposure to bright light with 16,000 lux; healthy animals (n = 3) served as controls for histology. At baseline and weekly for 3 consecutive weeks, dark-and light-adapted electroretinography was used to assess retinal function. Analysis of the response versus luminance function retrieved the parameters Vmax (saturation amplitude) and k (luminance to reach 1/2Vmax). Retinal morphology was assessed by histology (hematoxylin-eosin [HE] staining; TUNEL assay) and immunohistochemistry (rhodopsin staining). RESULTS. Vmax was higher in the STIM group compared with SHAM 1 week after light damage (mean intra-individual difference between groups 116.06 mu V; P = 0.046). The b-wave implicit time for the rod response (0.01 cd.s/m(2)) was lower in the STIM group compared with the SHAM group 2 weeks after light damage (mean intra-individual difference between groups 5.78 ms; P = 0.023); no other significant differences were found. Histological analyses showed photoreceptor cell death (TUNEL and HE) in SHAM, most pronounced in the superior hemiretina. STIM showed complete outer nuclear layer thickness preservation, reduced photoreceptor cell death, and preserved outer segment length compared with SHAM (HE and rhodopsin). CONCLUSIONS. This sham-controlled study shows that TES can protect retinal cells against mild light-induced degeneration in Sprague Dawley rats. These findings could help to establish TES as a treatment in human forms of retinal degenerative disease. (Invest Ophthalmol Vis Sci. 2012;53:5552-5561) DOI: 10.1167/iovs.12-10037
Resumo:
Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inherited retinal disease. However, this treatment was less effective with advanced disease. Stem cell-based therapy is being pursued as a potential alternative approach in the treatment of retinal degenerative diseases. In this review, we will focus on stem cell-based therapies in the pipeline and summarize progress in treatment of retinal degenerative disease.
Resumo:
BACKGROUND: Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons. METHODS: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele-specific oligonucleotides corresponding to all 298 Usher syndrome-associated sequence variants known to date, 76 of which are novel, were arrayed. RESULTS: Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. CONCLUSION: The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first-pass screening tool.
Resumo:
Retinitis pigmentosa (RP) constitutes a major cause of blindness and the Retinitis Pigmentosa GTPase Regulator (RPGR) gene accounts for up to 80% of all X-linked RP cases. A novel isoform of RPGR, expressed in the human retina, was identified and characterized. It truncates the Regulator of Chromosome Condensation 1 (RCC1) homologous protein domain (RCC1h) of RPGR and mediates the formation of isoform-specific complexes with the RPGR-interacting protein 1 (RPGRIP1). Immunohistochemistry localized the novel RPGR isoform predominantly to inner segments of cone photoreceptors, where it colocalizes with RPGRIP1 in the human retina. In a patient with a mild RP phenotype, we identified a nucleotide substitution in a splicing regulator, which leads to 3.5 times higher levels of the transcripts coding for the novel RPGR isoform. The nucleotide substitution affects regulated alternative splicing of the novel RPGR isoform and suggests a tight adjustment of splicing as a prerequisite for proper function of photoreceptors.
Resumo:
PURPOSE: To report a large, consanguineous Algerian family affected with Leber congenital amaurosis (LCA) or early-onset retinal degeneration (EORD). METHODS: All accessible family members underwent a complete ophthalmic examination, and blood was obtained for DNA extraction. Homozygosity mapping was performed with markers flanking 12 loci associated with LCA. The 15 exons of TULP1 were sequenced. RESULTS: Seven of 30 examined family members were affected, including five with EORD and two with LCA. All patients had nystagmus, hemeralopia, mild myopia, and low visual acuity without photophobia. Fundus features were variable among EORD patients: typical spicular retinitis pigmentosa or clumped pigmented retinopathy with age-dependent macular involvement. A salt-and-pepper retinopathy with midperipheral retinal pigment epithelium (RPE) atrophy was present in the older patients with LCA, whereas the retina appeared virtually normal in the younger ones. Both scotopic and photopic electroretinograms were nondetectable. Fundus imaging revealed a perifoveal ring of increased fundus autofluorescence (FAF) in the proband, and optical coherence tomography disclosed a thinned retina, mainly due to photoreceptor loss. Linkage analysis identified a region of homozygosity on chromosome 6, region p21.3, and mutation screening revealed a novel 6-base in-frame duplication, in the TULP1 gene. CONCLUSIONS: Mutation in the TULP1 gene is a rare cause of LCA/EORD, with only 14 mutations reported so far. The observed intrafamilial phenotypic variability could be attributed to disease progression or possibly modifier alleles. This study provides the first description of FAF and quantitative reflectivity profiles in TULP1-related retinopathy.
Resumo:
PURPOSE: To test the hypothesis that hyporeflective spaces in the neuroretina found on optical coherence tomography (OCT) examination have different optical reflectivities according to whether they are associated with exudation or degeneration. METHODS: Retrospective analysis of eyes with idiopathic perifoveal telangiectasia (IPT), diabetic macular edema (DME), idiopathic central serous chorioretinopathy (CSC), retinitis pigmentosa (RP), or cone dystrophy (CD) and eyes of healthy control subjects. OCT scans were performed. Raw scan data were exported and used to calculate light reflectivity profiles. Reflectivity data were acquired by projecting three rectangular boxes, each 50 pixels long and 5 pixels wide, into the intraretinal cystoid spaces, centrally onto unaffected peripheral RPE, and onto the prefoveolar vitreous. Light reflectivity in the retinal pigment epithelium (RPE), vitreous, and intraretinal spaces for the different retinal conditions and control subjects were compared. RESULTS: Reflectivities of the vitreous and the RPE were similar among the groups. Hyporeflective spaces in eyes with exudation (DME, RP, and CSC) had higher reflectivity compared with the mean reflectivity of the vitreous, whereas the cystoid spaces in the maculae of the eyes without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous. CONCLUSIONS: Analysis of the light reflectivity profiles may be a tool to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous, and may be a way to differentiate degenerative from exudative macular disease.
Resumo:
This study investigated the anatomical consequences of a photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Retinae were examined 2 weeks, 1, 3, and 6 months after systemic IAA injection. The retinae were processed using standard histological methods to assess the gross morphology and topographical distribution of damage, and by immunohistochemistry to examine specific cell populations in the retina. Degeneration was restricted to the photoreceptors and was most common in the ventral retina and visual streak. In damaged regions, the outer nuclear layer was reduced in thickness or eliminated entirely, with a concomitant loss of immunoreactivity for rhodopsin. However, the magnitude of the effect varied between animals with the same IAA dose and survival time, suggesting individual differences in the bioavailability of the toxin. In all eyes, the inner retina remained intact, as judged by the thickness of the inner nuclear layer, and by the pattern of immunoreactivity for protein kinase C-alpha (rod bipolar cells) and calbindin D-28 (horizontal cells). Müller cell stalks became immunoreactive for glial fibrillary acidic protein (GFAP) even in IAA-treated retinae that had no signs of cell loss, indicating a response of the retina to the toxin. However, no marked hypertrophy or proliferation of Müller cells was observed with either GFAP or vimentin immunohistochemistry. Thus the selective, long lasting damage to the photoreceptors produced by this toxin did not lead to a reorganization of the surviving cells, at least with survival as long as 6 months, in contrast to the remodeling of the inner retina that is observed in inherited retinal degenerations such as retinitis pigmentosa and retinal injuries such as retinal detachment.