879 resultados para Disturbance amplitude
Resumo:
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the ``Linear-Sweep'' frequency mode, while the oscilloscope is operated in the ``Envelope'' acquisition mode. Under these conditions, the acquired envelopes directly correspond to the (input and output signal) spectra, whose ratio yields the amplitude frequency response. The method is easy to configure, automatic, time-efficient, and does not require any external control or interface or programming. This method is ideally suited to impart hands-on experience in sweep frequency response measurements, demonstrate resonance phenomenon in transformer windings, explain the working principle of an impedance analyzer, practically exhibit properties of network functions, and so on. The proposed method is an inexpensive alternative to existing commercial equipment meant for this job and is also an effective teaching aid. Details of its implementation, along with some practical measurements on an actual transformer, are presented.
Resumo:
1. Habitat fragmentation, anthropogenic disturbance and the introduction of invasive species are factors thought to structure ant assemblages. To understand responses of the ant community to changes in the environment, ants are commonly categorised into functional groups, a scheme developed and based on Australian ants. 2. Behaviourally dominant and aggressive ants of the dominant dolichoderinae functional group have been suggested to structure the ant assemblages in arid and semi-arid habitats of these regions. Given the limited geographical distribution of dominant dolichoderinae, it is crucial to determine the responses of the ant community to changes in the environment in their absence. 3. This study addresses this less studied aspect by considering the associations of ants of Western Ghats, India, with habitat, anthropogenic disturbance and introduced ants. We determined how ant functional groups respond to these factors in this region, where dominant dolichoderines are naturally absent, and whether responses are consistent with predictions derived from the ant functional group scheme. 4. This study provides new information on ant assemblages in a little-studied region. As in other parts of the world, ant assemblages in Western Ghats were strongly influenced by habitat and disturbance, with different functional groups associated with different habitats and levels of disturbance. 5. No functional group showed evidence of being influenced by the abundance of introduced species. In addition, predictions of negative interactions between functional groups were not supported. Our findings suggest that abiotic factors are universal determinants of ant assemblage structure, but that competitive interactions may not be.
Resumo:
Acoustic Emission (AE) signals, which are electrical version of acoustic emissions, are usually analysed using a set of signal parameters. The major objective of signal analysis is to study the characteristics of the sources of emissions. Peak amplitude (P-a) and rise time (R-t) are two such parameters used for source characterization. In this paper, we theoretically investigate the efficiency of P-a and R-t to classify and characterize AE sources by modelling the input stress pulse and transducer. Analytical expressions obtained for P-a and R-t clearly indicate their use and efficiency for source characterization. It is believed that these results may be of use to investigators in areas like control systems and signal processing also.
Resumo:
Changes in vegetation are taking place due to anthropogenic activities since the colonization of the evergreen forest zone of Western Ghats. The forests of the Western Ghats were contiguous and uniformly rich in endemism within each climatic and physiographic regime. The region continues to be one of the biodiversity hot spots of the world. However unplanned developmental activities are altering the balance of the ecosystem. This study focuses on the floristic structure, composition and diversity of forests with varying degree of human disturbances. Based on the investigations, various strategies for conservation and sustainable utilization of forest resources were proposed.
Resumo:
We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America
Resumo:
The paper reports the development of new amplitude-comparator techniques which allow the instantaneous comparison of the amplitude of the signals derived from primary line quantities. These techniques are used to derive a variety of impedance characteristics. The merits of the new relaying system are: the simple mode of the relay circuitry, the derivation of closed polar characteristics (i.e. quadrilateral) by a single measuring gate and sharp discontinuities in the polar characteristics. Design principles and circuit models in their schematic form are described and, in addition, a comprehensive theoretical basis for comparison is also presented. Dynamic test results are presented for a quadrilateral characteristic of potentially general application.
Resumo:
The paper reports further work on the amplitude-comparison technique described by the same authors in a previous paper. This technique is extended to develop improved polar characteristics. Discontinuous polar characteristics, like directional parallelograms, are obtained by a single measuring gate with a simple mode of relay circuitry, whereas two measuring gates are required to provide a directional-quadrilateral characteristic of potentially general application. The paper also describes some new possibilities in phase-comparison methods for distance-protection schemes. Comparator models which effect the amplitude and phase comparison of the relaying signals are described in their schematic form. A comprehensive theoretical basis for comparison is also presented.
Resumo:
The question of achieving decoupling and asymptotic disturbance rejection in time-invariant linear multivariable systems subject to unmeasurable arbitrary disturbances of a given class is discussed. A synthesis procedure which determines a feedback structure, incorporating an integral compensator, is presented.
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.
Resumo:
Gabor's analytic signal (AS) is a unique complex signal corresponding to a real signal, but in general, it admits infinitely-many combinations of amplitude and frequency modulations (AM and FM, respectively). The standard approach is to enforce a non-negativity constraint on the AM, but this results in discontinuities in the corresponding phase modulation (PM), and hence, an FM with discontinuities particularly when the underlying AM-FM signal is over-modulated. In this letter, we analyze the phase discontinuities and propose a technique to compute smooth AM and FM from the AS, by relaxing the non-negativity constraint on the AM. The proposed technique is effective at handling over-modulated signals. We present simulation results to support the theoretical calculations.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
The amplitude-modulation (AM) and phase-modulation (PM) of an amplitude-modulated frequency-modulated (AM-FM) signal are defined as the modulus and phase angle, respectively, of the analytic signal (AS). The FM is defined as the derivative of the PM. However, this standard definition results in a PM with jump discontinuities in cases when the AM index exceeds unity, resulting in an FM that contains impulses. We propose a new approach to define smooth AM, PM, and FM for the AS, where the PM is computed as the solution to an optimization problem based on a vector interpretation of the AS. Our approach is directly linked to the fractional Hilbert transform (FrHT) and leads to an eigenvalue problem. The resulting PM and AM are shown to be smooth, and in particular, the AM turns out to be bipolar. We show an equivalence of the eigenvalue formulation to the square of the AS, and arrive at a simple method to compute the smooth PM. Some examples on synthesized and real signals are provided to validate the theoretical calculations.
Resumo:
The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I-3/I-1 shows a power-law behavior with strain amplitude. In addition, I-3/I-1 and the elastic component of stress amplitude sigma(E)(0) show a very prominent maximum at the strain value where the number density (n(v)) of the Taylor vortices is maximum. A subsequent increase in applied strain (gamma) results in the distortions of the vortices and a concomitant decrease in n(v), accompanied by a sharp drop in I-3 and sigma(E)(0). The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of gamma corresponding to the peak of I-3, similar to that observed for hard-sphere glasses.