884 resultados para Distributed network protocol
Resumo:
Entendemos por inteligencia colectiva una forma de inteligencia que surge de la colaboración y la participación de varios individuos o, siendo más estrictos, varias entidades. En base a esta sencilla definición podemos observar que este concepto es campo de estudio de las más diversas disciplinas como pueden ser la sociología, las tecnologías de la información o la biología, atendiendo cada una de ellas a un tipo de entidades diferentes: seres humanos, elementos de computación o animales. Como elemento común podríamos indicar que la inteligencia colectiva ha tenido como objetivo el ser capaz de fomentar una inteligencia de grupo que supere a la inteligencia individual de las entidades que lo forman a través de mecanismos de coordinación, cooperación, competencia, integración, diferenciación, etc. Sin embargo, aunque históricamente la inteligencia colectiva se ha podido desarrollar de forma paralela e independiente en las distintas disciplinas que la tratan, en la actualidad, los avances en las tecnologías de la información han provocado que esto ya no sea suficiente. Hoy en día seres humanos y máquinas a través de todo tipo de redes de comunicación e interfaces, conviven en un entorno en el que la inteligencia colectiva ha cobrado una nueva dimensión: ya no sólo puede intentar obtener un comportamiento superior al de sus entidades constituyentes sino que ahora, además, estas inteligencias individuales son completamente diferentes unas de otras y aparece por lo tanto el doble reto de ser capaces de gestionar esta gran heterogeneidad y al mismo tiempo ser capaces de obtener comportamientos aún más inteligentes gracias a las sinergias que los distintos tipos de inteligencias pueden generar. Dentro de las áreas de trabajo de la inteligencia colectiva existen varios campos abiertos en los que siempre se intenta obtener unas prestaciones superiores a las de los individuos. Por ejemplo: consciencia colectiva, memoria colectiva o sabiduría colectiva. Entre todos estos campos nosotros nos centraremos en uno que tiene presencia en la práctica totalidad de posibles comportamientos inteligentes: la toma de decisiones. El campo de estudio de la toma de decisiones es realmente amplio y dentro del mismo la evolución ha sido completamente paralela a la que citábamos anteriormente en referencia a la inteligencia colectiva. En primer lugar se centró en el individuo como entidad decisoria para posteriormente desarrollarse desde un punto de vista social, institucional, etc. La primera fase dentro del estudio de la toma de decisiones se basó en la utilización de paradigmas muy sencillos: análisis de ventajas e inconvenientes, priorización basada en la maximización de algún parámetro del resultado, capacidad para satisfacer los requisitos de forma mínima por parte de las alternativas, consultas a expertos o entidades autorizadas o incluso el azar. Sin embargo, al igual que el paso del estudio del individuo al grupo supone una nueva dimensión dentro la inteligencia colectiva la toma de decisiones colectiva supone un nuevo reto en todas las disciplinas relacionadas. Además, dentro de la decisión colectiva aparecen dos nuevos frentes: los sistemas de decisión centralizados y descentralizados. En el presente proyecto de tesis nos centraremos en este segundo, que es el que supone una mayor atractivo tanto por las posibilidades de generar nuevo conocimiento y trabajar con problemas abiertos actualmente así como en lo que respecta a la aplicabilidad de los resultados que puedan obtenerse. Ya por último, dentro del campo de los sistemas de decisión descentralizados existen varios mecanismos fundamentales que dan lugar a distintas aproximaciones a la problemática propia de este campo. Por ejemplo el liderazgo, la imitación, la prescripción o el miedo. Nosotros nos centraremos en uno de los más multidisciplinares y con mayor capacidad de aplicación en todo tipo de disciplinas y que, históricamente, ha demostrado que puede dar lugar a prestaciones muy superiores a otros tipos de mecanismos de decisión descentralizados: la confianza y la reputación. Resumidamente podríamos indicar que confianza es la creencia por parte de una entidad que otra va a realizar una determinada actividad de una forma concreta. En principio es algo subjetivo, ya que la confianza de dos entidades diferentes sobre una tercera no tiene porqué ser la misma. Por otro lado, la reputación es la idea colectiva (o evaluación social) que distintas entidades de un sistema tiene sobre otra entidad del mismo en lo que respecta a un determinado criterio. Es por tanto una información de carácter colectivo pero única dentro de un sistema, no asociada a cada una de las entidades del sistema sino por igual a todas ellas. En estas dos sencillas definiciones se basan la inmensa mayoría de sistemas colectivos. De hecho muchas disertaciones indican que ningún tipo de organización podría ser viable de no ser por la existencia y la utilización de los conceptos de confianza y reputación. A partir de ahora, a todo sistema que utilice de una u otra forma estos conceptos lo denominaremos como sistema de confianza y reputación (o TRS, Trust and Reputation System). Sin embargo, aunque los TRS son uno de los aspectos de nuestras vidas más cotidianos y con un mayor campo de aplicación, el conocimiento que existe actualmente sobre ellos no podría ser más disperso. Existen un gran número de trabajos científicos en todo tipo de áreas de conocimiento: filosofía, psicología, sociología, economía, política, tecnologías de la información, etc. Pero el principal problema es que no existe una visión completa de la confianza y reputación en su sentido más amplio. Cada disciplina focaliza sus estudios en unos aspectos u otros dentro de los TRS, pero ninguna de ellas trata de explotar el conocimiento generado en el resto para mejorar sus prestaciones en su campo de aplicación concreto. Aspectos muy detallados en algunas áreas de conocimiento son completamente obviados por otras, o incluso aspectos tratados por distintas disciplinas, al ser estudiados desde distintos puntos de vista arrojan resultados complementarios que, sin embargo, no son aprovechados fuera de dichas áreas de conocimiento. Esto nos lleva a una dispersión de conocimiento muy elevada y a una falta de reutilización de metodologías, políticas de actuación y técnicas de una disciplina a otra. Debido su vital importancia, esta alta dispersión de conocimiento se trata de uno de los principales problemas que se pretenden resolver con el presente trabajo de tesis. Por otro lado, cuando se trabaja con TRS, todos los aspectos relacionados con la seguridad están muy presentes ya que muy este es un tema vital dentro del campo de la toma de decisiones. Además también es habitual que los TRS se utilicen para desempeñar responsabilidades que aportan algún tipo de funcionalidad relacionada con el mundo de la seguridad. Por último no podemos olvidar que el acto de confiar está indefectiblemente unido al de delegar una determinada responsabilidad, y que al tratar estos conceptos siempre aparece la idea de riesgo, riesgo de que las expectativas generadas por el acto de la delegación no se cumplan o se cumplan de forma diferente. Podemos ver por lo tanto que cualquier sistema que utiliza la confianza para mejorar o posibilitar su funcionamiento, por su propia naturaleza, es especialmente vulnerable si las premisas en las que se basa son atacadas. En este sentido podemos comprobar (tal y como analizaremos en más detalle a lo largo del presente documento) que las aproximaciones que realizan las distintas disciplinas que tratan la violación de los sistemas de confianza es de lo más variado. únicamente dentro del área de las tecnologías de la información se ha intentado utilizar alguno de los enfoques de otras disciplinas de cara a afrontar problemas relacionados con la seguridad de TRS. Sin embargo se trata de una aproximación incompleta y, normalmente, realizada para cumplir requisitos de aplicaciones concretas y no con la idea de afianzar una base de conocimiento más general y reutilizable en otros entornos. Con todo esto en cuenta, podemos resumir contribuciones del presente trabajo de tesis en las siguientes. • La realización de un completo análisis del estado del arte dentro del mundo de la confianza y la reputación que nos permite comparar las ventajas e inconvenientes de las diferentes aproximación que se realizan a estos conceptos en distintas áreas de conocimiento. • La definición de una arquitectura de referencia para TRS que contempla todas las entidades y procesos que intervienen en este tipo de sistemas. • La definición de un marco de referencia para analizar la seguridad de TRS. Esto implica tanto identificar los principales activos de un TRS en lo que respecta a la seguridad, así como el crear una tipología de posibles ataques y contramedidas en base a dichos activos. • La propuesta de una metodología para el análisis, el diseño, el aseguramiento y el despliegue de un TRS en entornos reales. Adicionalmente se exponen los principales tipos de aplicaciones que pueden obtenerse de los TRS y los medios para maximizar sus prestaciones en cada una de ellas. • La generación de un software que permite simular cualquier tipo de TRS en base a la arquitectura propuesta previamente. Esto permite evaluar las prestaciones de un TRS bajo una determinada configuración en un entorno controlado previamente a su despliegue en un entorno real. Igualmente es de gran utilidad para evaluar la resistencia a distintos tipos de ataques o mal-funcionamientos del sistema. Además de las contribuciones realizadas directamente en el campo de los TRS, hemos realizado aportaciones originales a distintas áreas de conocimiento gracias a la aplicación de las metodologías de análisis y diseño citadas con anterioridad. • Detección de anomalías térmicas en Data Centers. Hemos implementado con éxito un sistema de deteción de anomalías térmicas basado en un TRS. Comparamos la detección de prestaciones de algoritmos de tipo Self-Organized Maps (SOM) y Growing Neural Gas (GNG). Mostramos como SOM ofrece mejores resultados para anomalías en los sistemas de refrigeración de la sala mientras que GNG es una opción más adecuada debido a sus tasas de detección y aislamiento para casos de anomalías provocadas por una carga de trabajo excesiva. • Mejora de las prestaciones de recolección de un sistema basado en swarm computing y odometría social. Gracias a la implementación de un TRS conseguimos mejorar las capacidades de coordinación de una red de robots autónomos distribuidos. La principal contribución reside en el análisis y la validación de las mejoras increméntales que pueden conseguirse con la utilización apropiada de la información existente en el sistema y que puede ser relevante desde el punto de vista de un TRS, y con la implementación de algoritmos de cálculo de confianza basados en dicha información. • Mejora de la seguridad de Wireless Mesh Networks contra ataques contra la integridad, la confidencialidad o la disponibilidad de los datos y / o comunicaciones soportadas por dichas redes. • Mejora de la seguridad de Wireless Sensor Networks contra ataques avanzamos, como insider attacks, ataques desconocidos, etc. Gracias a las metodologías presentadas implementamos contramedidas contra este tipo de ataques en entornos complejos. En base a los experimentos realizados, hemos demostrado que nuestra aproximación es capaz de detectar y confinar varios tipos de ataques que afectan a los protocoles esenciales de la red. La propuesta ofrece unas velocidades de detección muy altas así como demuestra que la inclusión de estos mecanismos de actuación temprana incrementa significativamente el esfuerzo que un atacante tiene que introducir para comprometer la red. Finalmente podríamos concluir que el presente trabajo de tesis supone la generación de un conocimiento útil y aplicable a entornos reales, que nos permite la maximización de las prestaciones resultantes de la utilización de TRS en cualquier tipo de campo de aplicación. De esta forma cubrimos la principal carencia existente actualmente en este campo, que es la falta de una base de conocimiento común y agregada y la inexistencia de una metodología para el desarrollo de TRS que nos permita analizar, diseñar, asegurar y desplegar TRS de una forma sistemática y no artesanal y ad-hoc como se hace en la actualidad. ABSTRACT By collective intelligence we understand a form of intelligence that emerges from the collaboration and competition of many individuals, or strictly speaking, many entities. Based on this simple definition, we can see how this concept is the field of study of a wide range of disciplines, such as sociology, information science or biology, each of them focused in different kinds of entities: human beings, computational resources, or animals. As a common factor, we can point that collective intelligence has always had the goal of being able of promoting a group intelligence that overcomes the individual intelligence of the basic entities that constitute it. This can be accomplished through different mechanisms such as coordination, cooperation, competence, integration, differentiation, etc. Collective intelligence has historically been developed in a parallel and independent way among the different disciplines that deal with it. However, this is not enough anymore due to the advances in information technologies. Nowadays, human beings and machines coexist in environments where collective intelligence has taken a new dimension: we yet have to achieve a better collective behavior than the individual one, but now we also have to deal with completely different kinds of individual intelligences. Therefore, we have a double goal: being able to deal with this heterogeneity and being able to get even more intelligent behaviors thanks to the synergies that the different kinds of intelligence can generate. Within the areas of collective intelligence there are several open topics where they always try to get better performances from groups than from the individuals. For example: collective consciousness, collective memory, or collective wisdom. Among all these topics we will focus on collective decision making, that has influence in most of the collective intelligent behaviors. The field of study of decision making is really wide, and its evolution has been completely parallel to the aforementioned collective intelligence. Firstly, it was focused on the individual as the main decision-making entity, but later it became involved in studying social and institutional groups as basic decision-making entities. The first studies within the decision-making discipline were based on simple paradigms, such as pros and cons analysis, criteria prioritization, fulfillment, following orders, or even chance. However, in the same way that studying the community instead of the individual meant a paradigm shift within collective intelligence, collective decision-making means a new challenge for all the related disciplines. Besides, two new main topics come up when dealing with collective decision-making: centralized and decentralized decision-making systems. In this thesis project we focus in the second one, because it is the most interesting based on the opportunities to generate new knowledge and deal with open issues in this area, as well as these results can be put into practice in a wider set of real-life environments. Finally, within the decentralized collective decision-making systems discipline, there are several basic mechanisms that lead to different approaches to the specific problems of this field, for example: leadership, imitation, prescription, or fear. We will focus on trust and reputation. They are one of the most multidisciplinary concepts and with more potential for applying them in every kind of environments. Besides, they have historically shown that they can generate better performance than other decentralized decision-making mechanisms. Shortly, we say trust is the belief of one entity that the outcome of other entities’ actions is going to be in a specific way. It is a subjective concept because the trust of two different entities in another one does not have to be the same. Reputation is the collective idea (or social evaluation) that a group of entities within a system have about another entity based on a specific criterion. Thus, it is a collective concept in its origin. It is important to say that the behavior of most of the collective systems are based on these two simple definitions. In fact, a lot of articles and essays describe how any organization would not be viable if the ideas of trust and reputation did not exist. From now on, we call Trust an Reputation System (TRS) to any kind of system that uses these concepts. Even though TRSs are one of the most common everyday aspects in our lives, the existing knowledge about them could not be more dispersed. There are thousands of scientific works in every field of study related to trust and reputation: philosophy, psychology, sociology, economics, politics, information sciences, etc. But the main issue is that a comprehensive vision of trust and reputation for all these disciplines does not exist. Every discipline focuses its studies on a specific set of topics but none of them tries to take advantage of the knowledge generated in the other disciplines to improve its behavior or performance. Detailed topics in some fields are completely obviated in others, and even though the study of some topics within several disciplines produces complementary results, these results are not used outside the discipline where they were generated. This leads us to a very high knowledge dispersion and to a lack in the reuse of methodologies, policies and techniques among disciplines. Due to its great importance, this high dispersion of trust and reputation knowledge is one of the main problems this thesis contributes to solve. When we work with TRSs, all the aspects related to security are a constant since it is a vital aspect within the decision-making systems. Besides, TRS are often used to perform some responsibilities related to security. Finally, we cannot forget that the act of trusting is invariably attached to the act of delegating a specific responsibility and, when we deal with these concepts, the idea of risk is always present. This refers to the risk of generated expectations not being accomplished or being accomplished in a different way we anticipated. Thus, we can see that any system using trust to improve or enable its behavior, because of its own nature, is especially vulnerable if the premises it is based on are attacked. Related to this topic, we can see that the approaches of the different disciplines that study attacks of trust and reputation are very diverse. Some attempts of using approaches of other disciplines have been made within the information science area of knowledge, but these approaches are usually incomplete, not systematic and oriented to achieve specific requirements of specific applications. They never try to consolidate a common base of knowledge that could be reusable in other context. Based on all these ideas, this work makes the following direct contributions to the field of TRS: • The compilation of the most relevant existing knowledge related to trust and reputation management systems focusing on their advantages and disadvantages. • We define a generic architecture for TRS, identifying the main entities and processes involved. • We define a generic security framework for TRS. We identify the main security assets and propose a complete taxonomy of attacks for TRS. • We propose and validate a methodology to analyze, design, secure and deploy TRS in real-life environments. Additionally we identify the principal kind of applications we can implement with TRS and how TRS can provide a specific functionality. • We develop a software component to validate and optimize the behavior of a TRS in order to achieve a specific functionality or performance. In addition to the contributions made directly to the field of the TRS, we have made original contributions to different areas of knowledge thanks to the application of the analysis, design and security methodologies previously presented: • Detection of thermal anomalies in Data Centers. Thanks to the application of the TRS analysis and design methodologies, we successfully implemented a thermal anomaly detection system based on a TRS.We compare the detection performance of Self-Organized- Maps and Growing Neural Gas algorithms. We show how SOM provides better results for Computer Room Air Conditioning anomaly detection, yielding detection rates of 100%, in training data with malfunctioning sensors. We also show that GNG yields better detection and isolation rates for workload anomaly detection, reducing the false positive rate when compared to SOM. • Improving the performance of a harvesting system based on swarm computing and social odometry. Through the implementation of a TRS, we achieved to improve the ability of coordinating a distributed network of autonomous robots. The main contribution lies in the analysis and validation of the incremental improvements that can be achieved with proper use information that exist in the system and that are relevant for the TRS, and the implementation of the appropriated trust algorithms based on such information. • Improving Wireless Mesh Networks security against attacks against the integrity, confidentiality or availability of data and communications supported by these networks. Thanks to the implementation of a TRS we improved the detection time rate against these kind of attacks and we limited their potential impact over the system. • We improved the security of Wireless Sensor Networks against advanced attacks, such as insider attacks, unknown attacks, etc. Thanks to the TRS analysis and design methodologies previously described, we implemented countermeasures against such attacks in a complex environment. In our experiments we have demonstrated that our system is capable of detecting and confining various attacks that affect the core network protocols. We have also demonstrated that our approach is capable of rapid attack detection. Also, it has been proven that the inclusion of the proposed detection mechanisms significantly increases the effort the attacker has to introduce in order to compromise the network. Finally we can conclude that, to all intents and purposes, this thesis offers a useful and applicable knowledge in real-life environments that allows us to maximize the performance of any system based on a TRS. Thus, we deal with the main deficiency of this discipline: the lack of a common and complete base of knowledge and the lack of a methodology for the development of TRS that allow us to analyze, design, secure and deploy TRS in a systematic way.
Resumo:
O jornalismo é um dos principais meios de oferta de temas para a discussão e formação da opinião pública, porém depende de um sistema técnico para ser transmitido. Durante mais de cem anos as informações produzidas pela imprensa foram emitidas, armazenadas, transmitidas e recebidas pelos chamados veículos de comunicação de massa que utilizam a rede centralizada cujas características estão na escassez material, produção em série e massificação. Esse sistema separa no tempo e no espaço emissores e receptores criando uma relação desigual de força em que as grandes empresas controlaram o fluxo informativo, definindo quais fatos seriam veiculados como notícia. Em 1995, a internet cuja informação circula sob a tecnologia da rede distribuída, foi apropriada pela sociedade, alterando a forma de produção, armazenamento e transmissão de informação. A tecnologia despertou a esperança de que esta ferramenta poderia proporcionar uma comunicação mais dialógica e democrática. Mas aos poucos pode-se perceber novas empresas se apropriando da tecnologia da rede distribuída sob a qual circula a internet, gerando um novo controle do fluxo informativo. Realizou-se nessa pesquisa um levantamento bibliográfico para estabelecer uma reflexão crítica dos diferentes intermediários entre fato e a notícia tanto da rede centralizada como na rede distribuída, objetivando despertar uma discussão que possa oferecer novas ideias para políticas, bem como alternativas para uma comunicação mais democrática e mais libertária.
Resumo:
Individuals with autism spectrum disorder (ASD) have impaired ability to use context, which may manifest as alterations of relatedness within the semantic network. However, impairment in context use may be more difficult to detect in high-functioning adults with ASD. To test context use in this population, we examined the influence of context on memory by using the “false memory” test. In the false memory task, lists of words were presented to high-functioning subjects with ASD and matched controls. Each list consists of words highly related to an index word not on the list. Subjects are then given a recognition test. Positive responses to the index words represent false memories. We found that individuals with ASD are able to discriminate false memory items from true items significantly better than are control subjects. Memory in patients with ASD may be more accurate than in normal individuals under certain conditions. These results also suggest that semantic representations comprise a less distributed network in high-functioning adults with ASD. Furthermore, these results may be related to the unusually high memory capacities found in some individuals with ASD. Research directed at defining the range of tasks performed superiorly by high-functioning individuals with ASD will be important for optimal vocational rehabilitation.
Resumo:
Little is known about the physiological mechanisms subserving the experience of air hunger and the affective control of breathing in humans. Acute hunger for air after inhalation of CO2 was studied in nine healthy volunteers with positron emission tomography. Subjective breathlessness was manipulated while end-tidal CO2- was held constant. Subjects experienced a significantly greater sense of air hunger breathing through a face mask than through a mouthpiece. The statistical contrast between the two conditions delineated a distributed network of primarily limbic/paralimbic brain regions, including multiple foci in dorsal anterior and middle cingulate gyrus, insula/claustrum, amygdala/periamygdala, lingual and middle temporal gyrus, hypothalamus, pulvinar, and midbrain. This pattern of activations was confirmed by a correlational analysis with breathlessness ratings. The commonality of regions of mesencephalon, diencephalon and limbic/paralimbic areas involved in primal emotions engendered by the basic vegetative systems including hunger for air, thirst, hunger, pain, micturition, and sleep, is discussed with particular reference to the cingulate gyrus. A theory that the phylogenetic origin of consciousness came from primal emotions engendered by immediate threat to the existence of the organism is discussed along with an alternative hypothesis by Edelman that primary awareness emerged with processes of ongoing perceptual categorization giving rise to a scene [Edelman, G. M. (1992) Bright Air, Brilliant Fire (Penguin, London)].
Resumo:
To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception.
Resumo:
In a series of experiments, we tested category-specific activation in normal parti¬cipants using magnetoencephalography (MEG). Our experiments explored the temporal processing of objects, as MEG characterises neural activity on the order of milliseconds. Our experiments explored object-processing, including assessing the time-course of ob¬ject naming, early differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level, and late differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level. In addition to studies using normal participants, we also utilised MEG to explore category-specific processing in a patient with a deficit for living objects. Our findings support the cascade model of object naming (Humphreys et al., 1988). In addition, our findings using normal participants demonstrate early, category-specific perceptual differences. These findings are corroborated by our patient study. In our assessment of the time-course of category-specific effects as well as a separate analysis designed to measure semantic differences between living and nonliving objects, we found support for the sensory/motor model of object naming (Martin, 1998), in addition to support for the cascade model of object naming. Thus, object processing in normal participants appears to be served by a distributed network in the brain, and there are both perceptual and semantic differences between living and nonliving objects. A separate study assessing the influence of the level at which you are asked to identify an object on processing in the brain found evidence supporting the convergence zone hypothesis (Damasio, 1989). Taken together, these findings indicate the utility of MEG in exploring the time-course of object processing, isolating early perceptual and later semantic effects within the brain.
Resumo:
This research examines and explains the links between safety culture and communication. Safety culture is a concept that in recent years has gained prominence but there has been little applied research conducted to investigate the meaning of the concept in 'real life' settings. This research focused on a Train Operating Company undergoing change in a move towards privatisation. These changes were evident in the management of safety, the organisation of the industry and internally in their management. The Train Operating Company's management took steps to improve their safety culture and communications through the development of a cascade communication structure. The research framework employed a qualitative methodology in order to investigate the effect of the new system on safety culture. Findings of the research were that communications in the organisation failed to be effective for a number of reasons, including both cultural and logistical problems. The cultural problems related to a lack of trust in the organisation by the management and the workforce, the perception of communications as management propaganda, and asyntonic communications between those involved, whilst logistical problems related to the inherent difficulties of communicating over a geographically distributed network. An organisational learning framework was used to explain the results. It is postulated that one of the principal reasons why change, either to the safety culture or to communications, did not occur was because of the organisation's inability to learn. The research has also shown the crucial importance of trust between the members of the organisation, as this was one of the fundamental reasons why the safety culture did not change, and why safety management systems were not fully implemented. This is consistent with the notion of mutual trust in the HSC (1993) definition of safety culture. This research has highlighted its relevance to safety culture and its importance for organisational change.
Resumo:
Motion is an important aspect of face perception that has been largely neglected to date. Many of the established findings are based on studies that use static facial images, which do not reflect the unique temporal dynamics available from seeing a moving face. In the present thesis a set of naturalistic dynamic facial emotional expressions was purposely created and used to investigate the neural structures involved in the perception of dynamic facial expressions of emotion, with both functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend the distributed neural system for face perception (Haxby et al.,2000). Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as inferior occipital gyri and superior temporal sulci, along with coupling between superior temporal sulci and amygdalae, as well as with inferior frontal gyri. MEG and Synthetic Aperture Magnetometry (SAM) were used to examine the spatiotemporal profile of neurophysiological activity within this dynamic face perception network. SAM analysis revealed a number of regions showing differential activation to dynamic versus static faces in the distributed face network, characterised by decreases in cortical oscillatory power in the beta band, which were spatially coincident with those regions that were previously identified with fMRI. These findings support the presence of a distributed network of cortical regions that mediate the perception of dynamic facial expressions, with the fMRI data providing information on the spatial co-ordinates paralleled by the MEG data, which indicate the temporal dynamics within this network. This integrated multimodal approach offers both excellent spatial and temporal resolution, thereby providing an opportunity to explore dynamic brain activity and connectivity during face processing.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
O jornalismo é um dos principais meios de oferta de temas para a discussão e formação da opinião pública, porém depende de um sistema técnico para ser transmitido. Durante mais de cem anos as informações produzidas pela imprensa foram emitidas, armazenadas, transmitidas e recebidas pelos chamados veículos de comunicação de massa que utilizam a rede centralizada cujas características estão na escassez material, produção em série e massificação. Esse sistema separa no tempo e no espaço emissores e receptores criando uma relação desigual de força em que as grandes empresas controlaram o fluxo informativo, definindo quais fatos seriam veiculados como notícia. Em 1995, a internet cuja informação circula sob a tecnologia da rede distribuída, foi apropriada pela sociedade, alterando a forma de produção, armazenamento e transmissão de informação. A tecnologia despertou a esperança de que esta ferramenta poderia proporcionar uma comunicação mais dialógica e democrática. Mas aos poucos pode-se perceber novas empresas se apropriando da tecnologia da rede distribuída sob a qual circula a internet, gerando um novo controle do fluxo informativo. Realizou-se nessa pesquisa um levantamento bibliográfico para estabelecer uma reflexão crítica dos diferentes intermediários entre fato e a notícia tanto da rede centralizada como na rede distribuída, objetivando despertar uma discussão que possa oferecer novas ideias para políticas, bem como alternativas para uma comunicação mais democrática e mais libertária.
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.
Resumo:
Many existing encrypted Internet protocols leak information through packet sizes and timing. Though seemingly innocuous, prior work has shown that such leakage can be used to recover part or all of the plaintext being encrypted. The prevalence of encrypted protocols as the underpinning of such critical services as e-commerce, remote login, and anonymity networks and the increasing feasibility of attacks on these services represent a considerable risk to communications security. Existing mechanisms for preventing traffic analysis focus on re-routing and padding. These prevention techniques have considerable resource and overhead requirements. Furthermore, padding is easily detectable and, in some cases, can introduce its own vulnerabilities. To address these shortcomings, we propose embedding real traffic in synthetically generated encrypted cover traffic. Novel to our approach is our use of realistic network protocol behavior models to generate cover traffic. The observable traffic we generate also has the benefit of being indistinguishable from other real encrypted traffic further thwarting an adversary's ability to target attacks. In this dissertation, we introduce the design of a proxy system called TrafficMimic that implements realistic cover traffic tunneling and can be used alone or integrated with the Tor anonymity system. We describe the cover traffic generation process including the subtleties of implementing a secure traffic generator. We show that TrafficMimic cover traffic can fool a complex protocol classification attack with 91% of the accuracy of real traffic. TrafficMimic cover traffic is also not detected by a binary classification attack specifically designed to detect TrafficMimic. We evaluate the performance of tunneling with independent cover traffic models and find that they are comparable, and, in some cases, more efficient than generic constant-rate defenses. We then use simulation and analytic modeling to understand the performance of cover traffic tunneling more deeply. We find that we can take measurements from real or simulated traffic with no tunneling and use them to estimate parameters for an accurate analytic model of the performance impact of cover traffic tunneling. Once validated, we use this model to better understand how delay, bandwidth, tunnel slowdown, and stability affect cover traffic tunneling. Finally, we take the insights from our simulation study and develop several biasing techniques that we can use to match the cover traffic to the real traffic while simultaneously bounding external information leakage. We study these bias methods using simulation and evaluate their security using a Bayesian inference attack. We find that we can safely improve performance with biasing while preventing both traffic analysis and defense detection attacks. We then apply these biasing methods to the real TrafficMimic implementation and evaluate it on the Internet. We find that biasing can provide 3-5x improvement in bandwidth for bulk transfers and 2.5-9.5x speedup for Web browsing over tunneling without biasing.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
One of the current challenges in model-driven engineering is enabling effective collaborative modelling. Two common approaches are either storing the models in a central repository, or keeping them under a traditional file-based version control system and build a centralized index for model-wide queries. Either way, special attention must be paid to the nature of these repositories and indexes as networked services: they should remain responsive even with an increasing number of concurrent clients. This paper presents an empirical study on the impact of certain key decisions on the scalability of concurrent model queries, using an Eclipse Connected Data Objects model repository and a Hawk model index. The study evaluates the impact of the network protocol, the API design and the internal caching mechanisms and analyzes the reasons for their varying performance.
Resumo:
A distributed network of cortical and subcortical brain regions mediates the control of voluntary behavior, but it is unclear how this complex system may flexibly shift between different behavioral events. This thesis describes the neurophysiological changes in several key nuclei across the brain during flexible behavior, using saccadic eye movements in rhesus macaque monkeys. We examined five nuclei critical for saccade initiation and modulation: the frontal eye field (FEF) in the cerebral cortex, the subthalamic nucleus (STN), caudate nucleus (CD), and substantia nigra pars reticulata (SNr) in the basal ganglia (BG), and the superior colliculus (SC) in the midbrain. The first study tested whether a ‘threshold’ theory of how neuronal activity cues saccade initiation is consistent with the flexible control of behavior. The theory suggests there is a fixed level of FEF and SC neuronal activation at which saccades are initiated. Our results provide strong evidence against a fixed saccade threshold in either structure during flexible behavior, and indicate that threshold variability might depend on the level of inhibitory signals applied to the FEF or SC. The next two studies investigated the BG network as a likely candidate to modulate a saccade initiation mechanism, based on strong inhibitory output signals from the BG to the FEF and SC. We investigated the STN and CD (BG input), and the SNr (BG oculomotor output) to examine changes across the BG network. This revealed robust task-contingent shifts in BG signaling (Chapter 3), which uniquely impacted saccade initiation according to behavioral condition (Chapters 3 and 4). The thesis concludes with a published short review of the mechanistic effects of BG deep brain stimulation (Chapter 5), and a general discussion including proof of concept saccade behavioral changes in an MPTP-induced Parkinsonian model (Chapter 6). The studies presented here demonstrate that the conditions for saccade initiation by the FEF and SC vary according to behavioral condition, while simultaneously, large-scale task dependent shifts occur in BG signaling consistent with the observed modulation of FEF and SC activity. Taken together, these describe a mechanistic framework by which the cortico-BG loop may contribute to the flexible control of behavior.