942 resultados para Distortion of the currents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a 3-dimensional phantom that can provide a comprehensive, accurate and complete measurement of the geometric distortion in MRI has been developed. In this paper, a scheme for characterizing the measured geometric distortion using the 3-D phantom is described. In the proposed scheme, a number of quantitative measures are developed and used to characterize the geometric distortion. These measures encompass the overall and spatial aspects of the geometric distortion. Two specific types of volume of interest, rectangular parallelepipeds (including cubes) and spheres are considered in the proposed scheme. As an illustration, characterization of the geometric distortion in a Siemens 1.5T Sonata MRI system using the proposed scheme is presented. As shown, the proposed scheme provides a comprehensive assessment of the geometric distortion. The scheme can be potentially used as a standard procedure for the assessment of geometric distortion in MRI. (C) 2004 American Association of Physicists in Medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Flexible video bronchoscopes, in particular the Olympus BF Type 3C160, are commonly used in pediatric respiratory medicine. There is no data on the magnification and distortion effects of these bronchoscopes yet important clinical decisions are made from the images. The aim of this study was to systematically describe the magnification and distortion of flexible bronchoscope images taken at various distances from the object. Methods: Using images of known objects and processing these by digital video and computer programs both magnification and distortion scales were derived. Results: Magnification changes as a linear function between 100 mm ( x 1) and 10 mm ( x 9.55) and then as an exponential function between 10 mm and 3 mm ( x 40) from the object. Magnification depends on the axis of orientation of the object to the optic axis or geometrical axis of the bronchoscope. Magnification also varies across the field of view with the central magnification being 39% greater than at the periphery of the field of view at 15 mm from the object. However, in the paediatric situation the diameter of the orifices is usually less than 10 mm and thus this limits the exposure to these peripheral limits of magnification reduction. Intraclass correlations for measurements and repeatability studies between instruments are very high, r = 0.96. Distortion occurs as both barrel and geometric types but both types are heterogeneous across the field of view. Distortion of geometric type ranges up to 30% at 3 mm from the object but may be as low as 5% depending on the position of the object in relation to the optic axis. Conclusion: We conclude that the optimal working distance range is between 40 and 10 mm from the object. However the clinician should be cognisant of both variations in magnification and distortion in clinical judgements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a conserved current for the Maxwellian field, which is invariant under the gauge group of that field, is the sum of two currents Ф+T, where Ф corresponds to a Poincare symmetry of the field, and T is a topological form that is conserved under every dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of ocean waves, currents and sea bed roughness is a complicated phenomena in fluid dynamic. This paper will describe the governing equations of motions of this phenomena in viscous and nonviscous conditions as well as study and analysis the experimental results of sets of physical models on waves, currents and artificial roughness, and consists of three parts: First, by establishing some typical patterns of roughness, the effects of sea bed roughness on a uniform current has been studied, as well as the manning coefficient of each type is reviewed to find the critical situation due to different arrangement. Second, the effect of roughness on wave parameters changes, such as wave height, wave length, and wave dispersion equations have been studied, third, superimposing, the waves + current + roughness patterns established in a flume, equipped with waves + currents generator, in this stage different analysis has been done to find the governing dimensionless numbers, and present the numbers to define the contortions and formulations of this phenomena. First step of the model is verified by the so called Chinese method, and the Second step by the Kamphius (1975), and third step by the van Rijn (1990) , and Brevik and Ass ( 1980), and in all cases reasonable agreements have been obtained. Finally new dimensionless parameters presented for this complicated phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observational data and a three dimensional numerical model (POM) are used to investigate the Persian Gulf outflow structure and its spreading pathway into the Oman Sea. The model is based on orthogonal curvilinear coordinate system in horizontal and train following coordinate (sigma coordinate) system in vertical. In the simulation, the horizontal diffusivity coefficients are calculated form Smogorinsky diffusivity formula and the eddy vertical diffusivities are obtained from a second turbulence closure model (namely Mellor-Yamada level 2.5 model of turbulence). The modeling area includes the east of the Persian Gulf, the Oman Sea and a part of the north-east of the Indian Ocean. In the model, the horizontal grid spacing was assumed to be about 3.5 km and the number of vertical levels was set to 32. The simulations show that the mean salinity of the PG outflow does not change substantially during the year and is about 39 psu, while its temperature exhibits seasonal variations. These lead to variations in outflow density in a way that is has its maximum density in late winter (March) and its minimum in mid-summer (August). At the entrance to the Oman Sea, the PG outflow turns to the right due to Coriolis Effect and falls down on the continental slope until it gains its equilibrium depth. The highest density of the outflow during March causes it to sink more into the deeper depths in contrast to that of August which the density is the lowest one. Hence, the neutral buoyancy depths of the outflow are about 500 m and 250 m for March and August respectively. Then, the outflow spreads in its equilibrium depths in the Oman Sea in vicinity of western and southern boundaries until it approach the Ras al Hamra Cape where the water depth suddenly begins to increase. Therefore, during March, the outflow that is deeper and wider relative to August, is more affected by the steep slope topography and as a result of vortex stretching mechanism and conservation of potential vorticity it separates from the lateral boundaries and finally forms an anti-cyclonic eddy in the Oman Sea. But during August the outflow moves as before in vicinity of lateral boundaries. In addition, the interaction of the PG outflow with tide in the Strait of Hormuz leads to intermittency in outflow movement into the Oman Sea and it could be the major reason for generations of Peddy (Peddies) in the Oman Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to study sedimentation mechanism by mathematical modeling in access channels which are affected by tidal currents. The most important factor for recognizing sedimentation process in every water environment is the flow pattern of that environment. It is noteworthy that the flow pattern is affected by the geometry and the shape of the environment as well as the type of existing affects in area. The area under the study in this thesis is located in Bushehr Gulf and the access channels (inner and outer). The study utilizes the hydrodynamic modeling with unstructured triangular and non-overlapping grids, using the finite volume, From method analysis in two scale sizes: large scale (200 m to 7.5km) and small scale (50m to 7.5km) in two different time durations of 15 days and 3.5 days to obtain the flow patterns. The 2D governing equations used in the model are the Depth-Averaged Shallow Water Equations. Turbulence Modeling is required to calculate the Eddy Viscosity Coefficient using the Smagorinsky Model with coefficient of 0.3. In addition to the flow modeling in two different scales and the use of the data of 3.5 day tidal current modeling have been considered to study the effects of the sediments equilibrium in the area and the channels. This model is capable of covering the area which is being settled and eroded and to identify the effects of tidal current of these processes. The required data of the above mentioned models such as current and sediments data have been obtained by the measurements in Bushehr Gulf and the access channels which was one of the PSO's (Port and Shipping Organization) project-titled, "The Sedimentation Modeling in Bushehr Port" in 1379. Hydrographic data have been obtained from Admiralty maps (2003) and Cartography Organization (1378, 1379). The results of the modeling includes: cross shore currents in northern and north western coasts of Bushehr Gulf during the neap tide and also the same current in northern and north eastern coasts of the Gulf during the spring tide. These currents wash and carry fine particles (silt, clay, and mud) from the coastal bed of which are generally made of mud and clay with some silts. In this regard, the role of sediments in the islands of this area and the islands made of depot of dredged sediments should not be ignored. The result of using 3.5 day modeling is that the cross channels currents leads to settlement places in inner and outer channels in tidal period. In neap tide the current enters the channel from upside bend of the two channels and outer channel. Then it crosses the channel oblique in some places of the outer channel. Also the oblique currents or even almost perpendicular current from up slope of inner channel between No. 15 and No. 18 buoys interact between the parallel currents in the channel and made secondary oblique currents which exit as a down-slope current in the channel and causes deposit of sediments as well as settling the suspended sediments carried by these currents. In addition in outer channel the speed of parallel currents in the bend of the channel which is naturally deeper increases. Therefore, it leads to erosion and suspension of sediments in this area. The speed of suspended sediments carried by this current which is parallel to the channel axis decreases when they pass through the shallower part of the channel where it is in the buoys No.7 and 8 to 5 and 6 are located. Therefore, the suspended sediment settles and because of this process these places will be even shallower. Furthermore, the passing of oblique upstream leads to settlement of the sediments in the up-slope and has an additional effect on the process of decreasing the depth of these locations. On the contrary, in the down-slope channel, as the results of sediments and current modeling indicates the speed of current increases and the currents make the particles of down-slope channel suspended and be carried away. Thus, in a vast area of downstream of both channels, the sediments have settled. At the end of the neap tide, the process along with circulations in this area produces eddies which causes sedimentation in the area. During spring some parts of this active location for sedimentation will enter both channels in a reverse process. The above mentioned processes and the places of sedimentation and erosion in inner and outer channels are validated by the sediments equilibrium modeling. This model will be able to estimate the suspended, bed load and the boundary layer thickness in each point of both channels and in the modeled area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose. Electrical stimulation of the pelvic floor is used as an adjunct in the conservative treatment of urinary incontinence. No consensus exists, however, regarding electrode placements for optimal stimulation of the pelvic-floor musculature. The purpose of this study was to compare two different bipolar electrode placements, one suggested by Laycock and Green (L2) the other by Dumoulin (D2), during electrical stimulation with interferential currents of the pelvic-floor musculature in continent women, using a two-group crossover design. Subjects. Ten continent female volunteers, ranging in age from 20 to 39 years (X̅=27.3, SD=5.6), were randomly assigned to one of two study groups. Methods. Each study group received neuromuscular electrical stimulation (NMES) of the pelvic-floor musculature using both electrode placements, the order of application being reversed for each group. Force of contraction was measured as pressure (in centimeters of water [cm H2O]) exerted on a vaginal pressure probe attached to a manometer. Data were analyzed using a two-way, mixed-model analysis of variance. Results. No difference in pressure was observed between the two electrode placements. Differences in current amplitude were observed, with the D2 electrode placement requiring less current amplitude to produce a maximum recorded pressure on the manometer. Subjective assessment by the subjects revealed a preference for the D2 electrode placement (7 of 10 subjects). Conclusion and Discussion. The lower current amplitudes required with the D2 placement to obtain recordings comparable to those obtained with the L2 technique suggest a more comfortable stimulation of the pelvic-floor muscles. The lower current amplitudes required also suggest that greater increases in pressure might be obtained with the D2 placement by increasing the current amplitude while remaining within the comfort threshold. These results will help to define treatment guidelines for a planned clinical study investigating the effects of NMES and exercise in the treatment of urinary stress incontinence in women postpartum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose. Electrical stimulation of the pelvic floor is used as an adjunct in the conservative treatment of urinary incontinence. No consensus exists, however, regarding electrode placements for optimal stimulation of the pelvic-floor musculature. The purpose of this study was to compare two different bipolar electrode placements, one suggested by Laycock and Green (L2) the other by Dumoulin (D2), during electrical stimulation with interferential currents of the pelvic-floor musculature in continent women, using a two-group crossover design. Subjects. Ten continent female volunteers, ranging in age from 20 to 39 years (X̅=27.3, SD=5.6), were randomly assigned to one of two study groups. Methods. Each study group received neuromuscular electrical stimulation (NMES) of the pelvic-floor musculature using both electrode placements, the order of application being reversed for each group. Force of contraction was measured as pressure (in centimeters of water [cm H2O]) exerted on a vaginal pressure probe attached to a manometer. Data were analyzed using a two-way, mixed-model analysis of variance. Results. No difference in pressure was observed between the two electrode placements. Differences in current amplitude were observed, with the D2 electrode placement requiring less current amplitude to produce a maximum recorded pressure on the manometer. Subjective assessment by the subjects revealed a preference for the D2 electrode placement (7 of 10 subjects). Conclusion and Discussion. The lower current amplitudes required with the D2 placement to obtain recordings comparable to those obtained with the L2 technique suggest a more comfortable stimulation of the pelvic-floor muscles. The lower current amplitudes required also suggest that greater increases in pressure might be obtained with the D2 placement by increasing the current amplitude while remaining within the comfort threshold. These results will help to define treatment guidelines for a planned clinical study investigating the effects of NMES and exercise in the treatment of urinary stress incontinence in women postpartum.