999 resultados para Distemper virus
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Density, morphometrics, and disease prevalence of raccoon populations were determined in 4 habitats (agriculture, riverine, managed, and forested) in central Alabama. In addition we monitored 71 collared raccoons to determine survival. Density estimates were similar in the agriculture (ag) and riverine habitats in central Alabama with 8 raccoons/km2, and lower in the forested habitat at 5 raccoons/ km2. Retention of juveniles did not appear to contribute to observed higher populations in the riverine and ag habitat. Although the riverine and ag, possibly due to supplemental resources, likely provide better habitat for raccoons, we found only body size in female raccoons to be different across habitats (P = 0.001). Human-caused mortality (either hunting or missing and presumed killed) was the main cause of mortality in several raccoon populations during fall; however, fall survival did not differ between the habitats (χ = 1.47, d.f. = 3, P = 0.69). Although rabies and distemper virus were prevalent in all habitats, they did not appear to contribute to mortality even with a high proportion of the population exhibiting positive CDV titers (ag – 44%, managed- 50%) and rabies titers (managed- 57% and riverine habitat-60%).
Resumo:
The maned wolf, Chrysocyon brachyurus, is an endangered Neotropical canid that survives at low population densities. Diseases are a potential threat for its conservation but to date have been poorly studied. We performed clinical evaluations and investigated the presence of infectious diseases through serology and coprologic tests on maned wolves from Galheiro Natural Private Reserve, Perdizes City, Minas Gerais State, southeastern Brazil. Fifteen wolves were captured between 2003 and 2008. We found high prevalences of antibody to canine distemper virus (CDV; 13/14), canine parvovirus (CPV; 4/14), canine adenovirus type 2 (13/14), canine coronavirus (5/11), canine parainfluenza virus (5/5), and Toxoplasma gondii (6/8), along with Ancylostomidae eggs in all feces samples. Antibodies against Leishmania sp. were found in one of 10 maned wolves, and all samples were negative for Neospora caniman. Evidence of high exposure to these viral agents was also observed in unvaccinated domestic clogs from neighboring farms. High prevalence of viral agents and parasites such as CDV, CPV, and Ancylostomidae indicates that this population faces considerable risk of outbreaks and chronic debilitating parasites. This is the first report of exposure to canine parainfluenza virus in Neotropical free-ranging wild canids. Our findings highlight that canine pathogens pose a serious hazard to the viability of maned wolves and other wild carnivore populations in the area and emphasize the need for monitoring and protecting wildlife health in remaining fragments of the Cerrado biome.
Resumo:
A livello globale una delle problematiche più urgenti della sanità pubblica umana e veterinaria è rappresentata dal controllo delle infezioni virali. L’emergenza di nuove malattie, la veloce diffusione di patologie finora confinate ad alcune aree geografiche, lo sviluppo di resistenza dei patogeni alle terapie utilizzate e la mancanza di nuove molecole attive, sono gli aspetti che influiscono più negativamente livello socio-economico in tutto il mondo. Misure per limitare la diffusione delle infezioni virali prevedono strategie per prevenire e controllare le infezioni in soggetti a rischio . Lo scopo di questa tesi è stato quello di indagare il possibile utilizzo di prototipi virali utilizzati come modello di virus umani per valutare l’efficacia di due diversi metodi di controllo delle malattie virali: la rimozione mediante filtrazione di substrati liquidi e gli antivirali di sintesi e di origine naturale. Per quanto riguarda la rimozione di agenti virali da substrati liquidi, questa è considerata come requisito essenziale per garantire la sicurezza microbiologica non solo di acqua ad uso alimentare , ma anche dei prodotti utilizzati a scopo farmaceutico e medico. Le Autorità competenti quali WHO ed EMEA hanno redatto delle linee guida molto restrittive su qualità e sicurezza microbiologica dei prodotti biologici per garantire la rimozione di agenti virali che possono essere trasmessi con prodotti utilizzati a scopo terapeutico. Nell'industria biomedicale e farmaceutica c'è l'esigenza di una tecnologia che permetta la rimozione dei virus velocemente, in grande quantità, a costi contenuti, senza alterare le caratteristiche del prodotto finale . La collaborazione con l’azienda GVS (Zola Predosa, Italia) ha avuto come obiettivo lo studio di una tecnologia di filtrazione che permette la rimozione dei virus tramite membrane innovative e/o tessuti-non-tessuti funzionalizzati che sfruttano l’attrazione elettrostatica per ritenere ed asportare i virus contenuti in matrici liquide. Anche gli antivirali possono essere considerati validi mezzi per il controllo delle malattie infettive degli animali e nell’uomo quando la vaccinazione non è realizzabile come ad esempio in caso di scoppio improvviso di un focolaio o di un attacco bioterroristico. La scoperta degli antivirali è relativamente recente ed il loro utilizzo è attualmente limitato alla patologia umana, ma è in costante aumento l’interesse per questo gruppo di farmaci. Negli ultimi decenni si è evidenziata una crescente necessità di mettere a punto farmaci ad azione antivirale in grado di curare malattie ad alta letalità con elevato impatto socio-economico, per le quali non esiste ancora un’efficace profilassi vaccinale. Un interesse sempre maggiore viene rivolto agli animali e alle loro patologie spontanee, come modello di studio di analoghe malattie dell’uomo. L’utilizzo di farmaci ad azione antivirale in medicina veterinaria potrebbe contribuire a ridurre l’impatto economico delle malattie limitando, nel contempo, la disseminazione dei patogeni nell’ambiente e, di conseguenza, il rischio sanitario per altri animali e per l’uomo in caso di zoonosi. Le piante sono sempre state utilizzate dall’industria farmaceutica per l’isolamento dei composti attivi e circa il 40% dei farmaci moderni contengono principi d’origine naturale. Alla luce delle recenti emergenze sanitarie, i fitofarmaci sono stati considerati come una valida per migliorare la salute degli animali e la qualità dei prodotti da essi derivati. L’obiettivo del nostro studio è stato indagare l’attività antivirale in vitro di estratti naturali e di molecole di sintesi nei confronti di virus a RNA usando come prototipo il Canine Distemper Virus, modello di studio per virus a RNA a polarità negativa, filogeneticamente correlato al virus del morbillo umano. La scelta di questo virus è dipesa dal fatto che rispetto ai virus a DNA e ai retrovirus attualmente l’offerta di farmaci capaci di contrastare le infezioni da virus a RNA è molto limitata e legata a molecole datate con alti livelli di tossicità. Tra le infezioni emergenti causate da virus a RNA sono sicuramente da menzionare quelle provocate da arbovirus. Le encefaliti virali da arbovirus rappresentano una emergenza a livello globale ed attualmente non esiste una terapia specifica. Una delle molecole più promettenti in vitro per la terapia delle infezioni da arbovirus è la ribavirina (RBV) che, con il suo meccanismo d’azione pleiotropico, si presta ad essere ulteriormente studiata in vivo per la sua attività antivirale nei confronti delle infezioni da arbovirus. Uno dei fattori limitanti l’utilizzo in vivo di questa molecola è l’incapacità della molecola di oltrepassare la barriera emato-encefalica. Nel nostro studio abbiamo messo a punto una formulazione per la somministrazione endonasale di RBV e ne abbiamo indagato la diffusione dalla cavità nasale all’encefalo attraverso l’identificazione e quantificazione della molecola antivirale nei diversi comparti cerebrali . Infine è stato condotto un esperimento in vivo per valutare l’efficacia di un composto a base di semi di Neem, di cui sono già note le proprietà antimicrobiche, nei confronti dell’infezione da orf virus, una zoonosi a diffusione mondiale, che ha un elevato impatto economico in aree ad alta densità ovi-caprina e può provocare lesioni invalidanti anche nell’uomo.
Resumo:
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) muM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) >/= 300 muM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 muM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 muM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
Resumo:
Microglial cells represent the endogenous immune system of the central nervous system (CNS). Upon pathological insults they reveal their immunological potential aimed at regaining homeostasis. These reactions have long been believed to follow a uniform and unspecific pattern which is irrespective to the underlying disease entity. Evidence is growing that this view seriously underrates microglial competence as the defenders of the CNS. In the present study, microglial cells of 47 dogs were examined ex vivo by means of flow cytometry. Ex vivo examination included immunophenotypic characterization using eight different surface markers and functional studies such as phagocytosis assay and the reactive oxygen species (ROS) generation test. The dogs were classified according to their histopathological diagnoses in disease categories (controls, canine distemper virus (CDV) induced demyelination, other diseases of the CNS) and results of microglial reaction profiles were compared. Immunophenotypic characterization generally revealed relative high conformity in the microglial disease response among the different groups, however the functional response was shown to be more specific. Dogs with intracranial inflammation and dogs with demyelination showed an enhanced phagocytosis, whereas a significant up-regulation of ROS generation was found in dogs with demyelination due to CDV infection. This strongly suggests a specific response of microglia to infection with CDV in the settings of our study and underlines the pivotal role of microglial ROS generation in the pathogenesis of demyelinating diseases, such as canine distemper.
Resumo:
Numerous cases of acute-onset progressive ataxia, hindlimb paresis and paralysis of unknown aetiology occurred during 1993 to 2003 in cheetahs (Acinonyx jubatus) within the European Endangered Species Programme (eep). This study describes the immunohistochemical investigation of a possible viral aetiology of the "cheetah myelopathy". Antibodies to feline herpesvirus type 1, canine distemper virus, canine parvovirus and Borna disease virus were applied to formalin-fixed and paraffin-embedded brain and spinal cord sections from 25 affected cheetahs aged between three-and-a-half months and 13 years. Using the avidin-biotin complex technique, none of the antibodies gave positive immunosignals in either the brain or the spinal cord tissue.
Resumo:
Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.
Resumo:
Epidemics of marine pathogens can spread at extremely rapid rates. For example, herpes virus spread through pilchard populations in Australia at a rate in excess of 10 000 km year(-1), and morbillivirus infections in seals and dolphins have spread at more than 3000 km year(-1). In terrestrial environments, only the epidemics of myxomatosis and calicivirus in Australian rabbits and West Nile Virus in birds in North America have rates of spread in excess of 1000 km year(-1). The rapid rates of spread of these epidemics has been attributed to flying insect vectors, but flying vectors have not been proposed for any marine pathogen. The most likely explanation for the relatively rapid spread of marine pathogens is the lack of barriers to dispersal in some parts of the ocean, and the potential for long-term survival of pathogens outside the host. These findings caution that pathogens may pose a particularly severe problem in the ocean. There is a need to develop epidemic models capable of generating these high rates of spread and obtain more estimates of disease spread rate.
Resumo:
In this study, the duodenum, spleen, tongue, and lungs were sampled from 56 Italian wolves who died between 2017 and 2020. The aim of the study was to evaluate the presence and spread of DNA and RNA viruses in the wolf population examined, relating the virological results to: year of sampling, region of origin, sex, age, season, genetic determination of the species, nutritional conditions, causes of death, matrices examined. In addition, the presence or absence of co-infections was evaluated. Through molecular methods, the presence of genomic DNA of three important DNA viruses was investigated, i.e.: Canine Parvovirus type 2 (CPV-2), Canine Adenovirus type 1 (CAdV-1), Canine Adenovirus type 2 (CAdV-2). Furthermore, the presence of genomic RNA of the important RNA viruses, Canine Enteric Coronavirus (CCoV) and Canine Distemper Virus (CDV), was also investigated. The results showed that the virus with the highest prevalence in the wolf population studied was CPV-2, found in 78.6% of subjects (44/56). The prevalence of CAdV was 17.9% (10/56), in particular CAdV-1 (12.5% - 7/56) and CAdV-2 (5.4% - 3/56). The results of the molecular investigations in RT-PCR of the two RNA viruses (CCoV and CDV) did not give positive results in the study population. In this study it was observed that the majority of wolves that resulted positive were in good nutritional conditions, thus excluding a direct cause of death from CPV-2, CAdV-1, and CAdV- 2 infections. Moreover, the prevalence obtained in this study suggests that, during the years here studied, the circulation of CAdV-1 and CAdV-2 in Italian wolves of the three sampled regions was sporadic, proving consistent with sporadic and short-lived introductions of the virus in these populations. However, the situation for CPV-2 is different as there was a circulation that suggests a pattern of continuous and lasting endemic exposure over time.
Resumo:
Nel periodo compreso tra il 2019 e il 2022 sono state testate differenti matrici biologiche di carnivori domestici e selvatici provenienti dall’Italia e da altri Paesi europei (Norvegia, Romania). Diversi saggi molecolari, tra cui real-time PCR, end-point PCR, semi-nested PCR, retrotrascrizione e rolling circle amplification, sono stati utilizzati per ricercare il DNA o l’RNA genomico di virus e batteri. Il sequenziamento dell’intero genoma o di geni informativi dei patogeni identificati ne ha inoltre consentito la caratterizzazione genetica e l’analisi filogenetica. Gli studi, svolti presso il Dipartimento di Scienze Mediche Veterinarie dell’Università di Bologna, erano focalizzati nei confronti di alcuni virus a DNA, come Carnivore protoparvovirus 1 in lupi dall’appennino italiano e cani dalla Romania, adenovirus canino di tipo 1 e 2 in cani e lupi provenienti dal territorio nazionale, circovirus canino in cani e lupi italiani e volpi rosse e artiche della Norvegia; virus a RNA, come il canine distemper virus in faine recuperate nel territorio italiano e il calicivirus felino in gatti con diagnosi di poliartrite; e batteri appartenenti alla specie Anaplasma phagocytophilum in gatti deceduti e sottoposti a necroscopia in Italia. Dai risultati ottenuti è emerso che gli agenti infettivi indagati circolano nelle popolazioni di carnivori domestici e selvatici in forma asintomatica o determinando talvolta sintomatologia clinica. In alcuni animali testati è stata rilevata la coinfezione con diversi agenti patogeni, condizione che può predisporre ad un aggravamento della sintomatologia clinica. Dall’analisi filogenetica sono emerse relazioni tra gli agenti infettivi rilevati nelle differenti specie animali suggerendone la trasmissione tra ospiti domestici e selvatici e confermando il ruolo epidemiologico svolto dei carnivori selvatici nel mantenimento dei patogeni nel territorio. Alla luce dei dati ottenuti, è importante sottolineare l’importanza delle misure di profilassi, in particolare la vaccinazione degli animali da compagnia, per ridurre la trasmissione e la diffusione degli agenti infettivi.
Resumo:
Substantial complexity has been introduced into treatment regimens for patients with human immunodeficiency virus (HIV) infection. Many drug-related problems (DRPs) are detected in these patients, such as low adherence, therapeutic inefficacy, and safety issues. We evaluated the impact of pharmacist interventions on CD4+ T-lymphocyte count, HIV viral load, and DRPs in patients with HIV infection. In this 18-month prospective controlled study, 90 outpatients were selected by convenience sampling from the Hospital Dia-University of Campinas Teaching Hospital (Brazil). Forty-five patients comprised the pharmacist intervention group and 45 the control group; all patients had HIV infection with or without acquired immunodeficiency syndrome. Pharmaceutical appointments were conducted based on the Pharmacotherapy Workup method, although DRPs and pharmacist intervention classifications were modified for applicability to institutional service limitations and research requirements. Pharmacist interventions were performed immediately after detection of DRPs. The main outcome measures were DRPs, CD4+ T-lymphocyte count, and HIV viral load. After pharmacist intervention, DRPs decreased from 5.2 (95% confidence interval [CI] =4.1-6.2) to 4.2 (95% CI =3.3-5.1) per patient (P=0.043). A total of 122 pharmacist interventions were proposed, with an average of 2.7 interventions per patient. All the pharmacist interventions were accepted by physicians, and among patients, the interventions were well accepted during the appointments, but compliance with the interventions was not measured. A statistically significant increase in CD4+ T-lymphocyte count in the intervention group was found (260.7 cells/mm(3) [95% CI =175.8-345.6] to 312.0 cells/mm(3) [95% CI =23.5-40.6], P=0.015), which was not observed in the control group. There was no statistical difference between the groups regarding HIV viral load. This study suggests that pharmacist interventions in patients with HIV infection can cause an increase in CD4+ T-lymphocyte counts and a decrease in DRPs, demonstrating the importance of an optimal pharmaceutical care plan.
Resumo:
Low bone mineral density (BMD) has been found in human immunodeficiency virus (HIV)-infected patients; however, data on associated factors remain unclear, specifically in middle-aged women. This study aims to evaluate factors associated with low BMD in HIV-positive women. In this cross-sectional study, a questionnaire was administered to 206 HIV-positive women aged 40 to 60 years who were receiving outpatient care. Clinical features, laboratory test results, and BMD were assessed. Yates and Pearson χ(2) tests and Poisson multiple regression analysis were performed. The median age of women was 47.7 years; 75% had nadir CD4 T-cell counts higher than 200, and 77.8% had viral loads below the detection limit. There was no association between low BMD at the proximal femur and lumbar spine (L1-L4) and risk factors associated with HIV infection and highly active antiretroviral therapy. Poisson multiple regression analysis showed that the only factor associated with low BMD at the proximal femur and lumbar spine was postmenopause status. Low BMD is present in more than one third of this population sample, in which most women are using highly active antiretroviral therapy and have a well-controlled disease. The main associated factor is related to estrogen deprivation. The present data support periodic BMD assessments in HIV-infected patients and highlight the need to implement comprehensive menopausal care for these women to prevent bone loss.
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
From 1992 to 1995 we studied 232 (69% male, 87% Caucasian) anti-human immunodeficiency virus (anti-HIV) positive Brazilian patients, through a questionnaire; HIV had been acquired sexually by 50%, from blood by 32%, sexually and/or from blood by 16.4% and by an unknown route by 1.7%. Intravenous drug use was reported by 29%; it was the most important risk factor for HIV transmission. The alanine aminotransferase quotient (qALT) was >1 for 40% of the patients, 93.6% had anti-hepatitis A virus antibody, 5.3% presented hepatitis B surface antigen, 44% were anti-hepatitis B core antigen positive and 53.8% were anti-hepatitis C virus (anti-HCV) positive. The anti-HCV test showed a significant association with qALT>1. Patients for whom the probable HIV transmission route was blood had a 10.8 times greater risk of being anti-HCV positive than patients infected by other routes. Among 30 patients submitted to liver biopsy, 18 presented chronic hepatitis.