864 resultados para Discrete-time linear systems
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.
Resumo:
In this thesis, a tube-based Distributed Economic Predictive Control (DEPC) scheme is presented for a group of dynamically coupled linear subsystems. These subsystems are components of a large scale system and control inputs are computed based on optimizing a local economic objective. Each subsystem is interacting with its neighbors by sending its future reference trajectory, at each sampling time. It solves a local optimization problem in parallel, based on the received future reference trajectories of the other subsystems. To ensure recursive feasibility and a performance bound, each subsystem is constrained to not deviate too much from its communicated reference trajectory. This difference between the plan trajectory and the communicated one is interpreted as a disturbance on the local level. Then, to ensure the satisfaction of both state and input constraints, they are tightened by considering explicitly the effect of these local disturbances. The proposed approach averages over all possible disturbances, handles tightened state and input constraints, while satisfies the compatibility constraints to guarantee that the actual trajectory lies within a certain bound in the neighborhood of the reference one. Each subsystem is optimizing a local arbitrary economic objective function in parallel while considering a local terminal constraint to guarantee recursive feasibility. In this framework, economic performance guarantees for a tube-based distributed predictive control (DPC) scheme are developed rigorously. It is presented that the closed-loop nominal subsystem has a robust average performance bound locally which is no worse than that of a local robust steady state. Since a robust algorithm is applying on the states of the real (with disturbances) subsystems, this bound can be interpreted as an average performance result for the real closed-loop system. To this end, we present our outcomes on local and global performance, illustrated by a numerical example.
Resumo:
Modern High-Performance Computing HPC systems are gradually increasing in size and complexity due to the correspondent demand of larger simulations requiring more complicated tasks and higher accuracy. However, as side effects of the Dennard’s scaling approaching its ultimate power limit, the efficiency of software plays also an important role in increasing the overall performance of a computation. Tools to measure application performance in these increasingly complex environments provide insights into the intricate ways in which software and hardware interact. The monitoring of the power consumption in order to save energy is possible through processors interfaces like Intel Running Average Power Limit RAPL. Given the low level of these interfaces, they are often paired with an application-level tool like Performance Application Programming Interface PAPI. Since several problems in many heterogeneous fields can be represented as a complex linear system, an optimized and scalable linear system solver algorithm can decrease significantly the time spent to compute its resolution. One of the most widely used algorithms deployed for the resolution of large simulation is the Gaussian Elimination, which has its most popular implementation for HPC systems in the Scalable Linear Algebra PACKage ScaLAPACK library. However, another relevant algorithm, which is increasing in popularity in the academic field, is the Inhibition Method. This thesis compares the energy consumption of the Inhibition Method and Gaussian Elimination from ScaLAPACK to profile their execution during the resolution of linear systems above the HPC architecture offered by CINECA. Moreover, it also collates the energy and power values for different ranks, nodes, and sockets configurations. The monitoring tools employed to track the energy consumption of these algorithms are PAPI and RAPL, that will be integrated with the parallel execution of the algorithms managed with the Message Passing Interface MPI.
Resumo:
In this paper, we devise a separation principle for the finite horizon quadratic optimal control problem of continuous-time Markovian jump linear systems driven by a Wiener process and with partial observations. We assume that the output variable and the jump parameters are available to the controller. It is desired to design a dynamic Markovian jump controller such that the closed loop system minimizes the quadratic functional cost of the system over a finite horizon period of time. As in the case with no jumps, we show that an optimal controller can be obtained from two coupled Riccati differential equations, one associated to the optimal control problem when the state variable is available, and the other one associated to the optimal filtering problem. This is a separation principle for the finite horizon quadratic optimal control problem for continuous-time Markovian jump linear systems. For the case in which the matrices are all time-invariant we analyze the asymptotic behavior of the solution of the derived interconnected Riccati differential equations to the solution of the associated set of coupled algebraic Riccati equations as well as the mean square stabilizing property of this limiting solution. When there is only one mode of operation our results coincide with the traditional ones for the LQG control of continuous-time linear systems.
Resumo:
This paper proposes an alternative geometric framework for analysing the inter-relationship between domestic saving, productivity and income determination in discrete time. The framework provides a means of understanding how low saving economies like the United States sustained high growth rates in the 1990s whereas high saving Japan did not. It also illustrates how the causality between saving and economic activity runs both ways and that discrete changes in national output and income depend on both current and previous accumulation behaviour. The open economy analogue reveals how international capital movements can create external account imbalances that enhance income growth for both borrower and lender economies. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
Actualmente, os smartphones e outros dispositivos móveis têm vindo a ser dotados com cada vez maior poder computacional, sendo capazes de executar um vasto conjunto de aplicações desde simples programas de para tirar notas até sofisticados programas de navegação. Porém, mesmo com a evolução do seu hardware, os actuais dispositivos móveis ainda não possuem as mesmas capacidades que os computadores de mesa ou portáteis. Uma possível solução para este problema é distribuir a aplicação, executando partes dela no dispositivo local e o resto em outros dispositivos ligados à rede. Adicionalmente, alguns tipos de aplicações como aplicações multimédia, jogos electrónicos ou aplicações de ambiente imersivos possuem requisitos em termos de Qualidade de Serviço, particularmente de tempo real. Ao longo desta tese é proposto um sistema de execução de código remota para sistemas distribuídos com restrições de tempo-real. A arquitectura proposta adapta-se a sistemas que necessitem de executar periodicamente e em paralelo mesmo conjunto de funções com garantias de tempo real, mesmo desconhecendo os tempos de execução das referidas funções. A plataforma proposta foi desenvolvida para sistemas móveis capazes de executar o Sistema Operativo Android.
Resumo:
Os sistemas de tempo real modernos geram, cada vez mais, cargas computacionais pesadas e dinâmicas, começando-se a tornar pouco expectável que sejam implementados em sistemas uniprocessador. Na verdade, a mudança de sistemas com um único processador para sistemas multi- processador pode ser vista, tanto no domínio geral, como no de sistemas embebidos, como uma forma eficiente, em termos energéticos, de melhorar a performance das aplicações. Simultaneamente, a proliferação das plataformas multi-processador transformaram a programação paralela num tópico de elevado interesse, levando o paralelismo dinâmico a ganhar rapidamente popularidade como um modelo de programação. A ideia, por detrás deste modelo, é encorajar os programadores a exporem todas as oportunidades de paralelismo através da simples indicação de potenciais regiões paralelas dentro das aplicações. Todas estas anotações são encaradas pelo sistema unicamente como sugestões, podendo estas serem ignoradas e substituídas, por construtores sequenciais equivalentes, pela própria linguagem. Assim, o modo como a computação é na realidade subdividida, e mapeada nos vários processadores, é da responsabilidade do compilador e do sistema computacional subjacente. Ao retirar este fardo do programador, a complexidade da programação é consideravelmente reduzida, o que normalmente se traduz num aumento de produtividade. Todavia, se o mecanismo de escalonamento subjacente não for simples e rápido, de modo a manter o overhead geral em níveis reduzidos, os benefícios da geração de um paralelismo com uma granularidade tão fina serão meramente hipotéticos. Nesta perspetiva de escalonamento, os algoritmos que empregam uma política de workstealing são cada vez mais populares, com uma eficiência comprovada em termos de tempo, espaço e necessidades de comunicação. Contudo, estes algoritmos não contemplam restrições temporais, nem outra qualquer forma de atribuição de prioridades às tarefas, o que impossibilita que sejam diretamente aplicados a sistemas de tempo real. Além disso, são tradicionalmente implementados no runtime da linguagem, criando assim um sistema de escalonamento com dois níveis, onde a previsibilidade, essencial a um sistema de tempo real, não pode ser assegurada. Nesta tese, é descrita a forma como a abordagem de work-stealing pode ser resenhada para cumprir os requisitos de tempo real, mantendo, ao mesmo tempo, os seus princípios fundamentais que tão bons resultados têm demonstrado. Muito resumidamente, a única fila de gestão de processos convencional (deque) é substituída por uma fila de deques, ordenada de forma crescente por prioridade das tarefas. De seguida, aplicamos por cima o conhecido algoritmo de escalonamento dinâmico G-EDF, misturamos as regras de ambos, e assim nasce a nossa proposta: o algoritmo de escalonamento RTWS. Tirando partido da modularidade oferecida pelo escalonador do Linux, o RTWS é adicionado como uma nova classe de escalonamento, de forma a avaliar na prática se o algoritmo proposto é viável, ou seja, se garante a eficiência e escalonabilidade desejadas. Modificar o núcleo do Linux é uma tarefa complicada, devido à complexidade das suas funções internas e às fortes interdependências entre os vários subsistemas. Não obstante, um dos objetivos desta tese era ter a certeza que o RTWS é mais do que um conceito interessante. Assim, uma parte significativa deste documento é dedicada à discussão sobre a implementação do RTWS e à exposição de situações problemáticas, muitas delas não consideradas em teoria, como é o caso do desfasamento entre vários mecanismo de sincronização. Os resultados experimentais mostram que o RTWS, em comparação com outro trabalho prático de escalonamento dinâmico de tarefas com restrições temporais, reduz significativamente o overhead de escalonamento através de um controlo de migrações, e mudanças de contexto, eficiente e escalável (pelo menos até 8 CPUs), ao mesmo tempo que alcança um bom balanceamento dinâmico da carga do sistema, até mesmo de uma forma não custosa. Contudo, durante a avaliação realizada foi detetada uma falha na implementação do RTWS, pela forma como facilmente desiste de roubar trabalho, o que origina períodos de inatividade, no CPU em questão, quando a utilização geral do sistema é baixa. Embora o trabalho realizado se tenha focado em manter o custo de escalonamento baixo e em alcançar boa localidade dos dados, a escalonabilidade do sistema nunca foi negligenciada. Na verdade, o algoritmo de escalonamento proposto provou ser bastante robusto, não falhando qualquer meta temporal nas experiências realizadas. Portanto, podemos afirmar que alguma inversão de prioridades, causada pela sub-política de roubo BAS, não compromete os objetivos de escalonabilidade, e até ajuda a reduzir a contenção nas estruturas de dados. Mesmo assim, o RTWS também suporta uma sub-política de roubo determinística: PAS. A avaliação experimental, porém, não ajudou a ter uma noção clara do impacto de uma e de outra. No entanto, de uma maneira geral, podemos concluir que o RTWS é uma solução promissora para um escalonamento eficiente de tarefas paralelas com restrições temporais.
Resumo:
Embedded systems are increasingly complex and dynamic, imposing progressively higher developing time and costs. Tuning a particular system for deployment is thus becoming more demanding. Furthermore when considering systems which have to adapt themselves to evolving requirements and changing service requests. In this perspective, run-time monitoring of the system behaviour becomes an important requirement, allowing to dynamically capturing the actual scheduling progress and resource utilization. For this to succeed, operating systems need to expose their internal behaviour and state, making it available to external applications, and a runtime monitoring mechanism must be available. However, such mechanism can impose a burden in the system itself if not wisely used. In this paper we explore this problem and propose a framework, which is intended to provide this run-time mechanism whilst achieving code separation, run-time efficiency and flexibility for the final developer.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms to inter alia enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a huge overhead of device transition. The technology enhancement has allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring the system schedulability. Our results show an energy gain of up to 90% in the best case when compared to the state-of-the-art.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.
Resumo:
Compositional schedulability analysis of hierarchical realtime systems is a well-studied problem. Various techniques have been developed to abstract resource requirements of components in such systems, and schedulability has been addressed using these abstract representations (also called component interfaces). These approaches for compositional analysis incur resource overheads when they abstract components into interfaces. In this talk, we define notions of resource schedulability and optimality for component interfaces, and compare various approaches.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined.