998 resultados para Discrete part
Resumo:
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors, and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.
Resumo:
It has been suggested that the temporal control of rhythmic unimianual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are ail emergent property, whereas for tasks that involve discontinuities timing is ail explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400 ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1 Hz and 1.7 Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers the optimal linear estimates recursion problem for discrete-time linear systems in its more general formulation. The system is allowed to be in descriptor form, rectangular, time-variant, and with the dynamical and measurement noises correlated. We propose a new expression for the filter recursive equations which presents an interesting simple and symmetric structure. Convergence of the associated Riccati recursion and stability properties of the steady-state filter are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng-Ribatski-Wojtan-Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: ""New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes"" [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to 25 degrees C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within +/-30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633-1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715-732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin with a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, allowing for an extremely simple update of the rotational variables within the scheme. The weak form is constructed via non-orthogonal projection, the time-collocation of which ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that general hyperelastic materials (and not only materials with quadratic potentials) are permitted in a totally consistent way. Spatial discretization is performed using the finite element method and the robust performance of the scheme is demonstrated by means of numerical examples.
Resumo:
A fully conserving algorithm is developed in this paper for the integration of the equations of motion in nonlinear rod dynamics. The starting point is a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, which results in an extremely simple update of the rotational variables. The weak form is constructed with a non-orthogonal projection corresponding to the application of the virtual power theorem. Together with an appropriate time-collocation, it ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that nonlinear hyperelastic materials (and not only materials with quadratic potentials) are permitted without any prejudice on the conservation properties. Spatial discretization is performed via the finite element method and the performance of the scheme is assessed by means of several numerical simulations.
Resumo:
This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.