813 resultados para Discrete Choice
Resumo:
En general, el análisis socioeconómico de los sistemas naturales no se contempla en los dominios de la ciencia natural. En este trabajo, sin embargo, se estima el cambio en el bienestar social por los efectos de la presión antrópica sobre el piedemonte mendocino vía la menor provisión de servicios ambientales. Para ello, se utiliza el método de los experimentos de elección discreta para inferir el valor social de tres servicios ambientales generados en las cuencas ubicadas al oeste del Gran Mendoza (riesgo aluvional, cobertura vegetal y recreación) y los costos de programas diseñados para mitigar la intensidad de dichos efectos. Un incremento del riesgo aluvional es el efecto de origen antrópico sobre el piedemonte mendocino que más preocupa a la población, seguido de una disminución de la cobertura vegetal y de la recreación. Se estimó que un incremento del riesgo aluvional en 1% equivale en pérdida de bienestar individual a un gasto, en promedio, de 24,13 pesos, en moneda de 2013, al año, cifra que es equivalente en términos de bienestar a una disminución de 6% de cobertura vegetal. Esta información puede ayudar a los hacedores de políticas, gestores de territorio y ecologistas a tener en cuenta las preferencias sociales en el diseño de sus programas y actividades.
Resumo:
La relación entre la estructura urbana y la movilidad ha sido estudiada desde hace más de 70 años. El entorno urbano incluye múltiples dimensiones como por ejemplo: la estructura urbana, los usos de suelo, la distribución de instalaciones diversas (comercios, escuelas y zonas de restauración, parking, etc.). Al realizar una revisión de la literatura existente en este contexto, se encuentran distintos análisis, metodologías, escalas geográficas y dimensiones, tanto de la movilidad como de la estructura urbana. En este sentido, se trata de una relación muy estudiada pero muy compleja, sobre la que no existe hasta el momento un consenso sobre qué dimensión del entorno urbano influye sobre qué dimensión de la movilidad, y cuál es la manera apropiada de representar esta relación. Con el propósito de contestar estas preguntas investigación, la presente tesis tiene los siguientes objetivos generales: (1) Contribuir al mejor entendimiento de la compleja relación estructura urbana y movilidad. y (2) Entender el rol de los atributos latentes en la relación entorno urbano y movilidad. El objetivo específico de la tesis es analizar la influencia del entorno urbano sobre dos dimensiones de la movilidad: número de viajes y tipo de tour. Vista la complejidad de la relación entorno urbano y movilidad, se pretende contribuir al mejor entendimiento de la relación a través de la utilización de 3 escalas geográficas de las variables y del análisis de la influencia de efectos inobservados en la movilidad. Para el análisis se utiliza una base de datos conformada por tres tipos de datos: (1) Una encuesta de movilidad realizada durante los años 2006 y 2007. Se obtuvo un total de 943 encuestas, en 3 barrios de Madrid: Chamberí, Pozuelo y Algete. (2) Información municipal del Instituto Nacional de Estadística: dicha información se encuentra enlazada con los orígenes y destinos de los viajes recogidos en la encuesta. Y (3) Información georeferenciada en Arc-GIS de los hogares participantes en la encuesta: la base de datos contiene información respecto a la estructura de las calles, localización de escuelas, parking, centros médicos y lugares de restauración. Se analizó la correlación entre e intra-grupos y se modelizaron 4 casos de atributos bajo la estructura ordinal logit. Posteriormente se evalúa la auto-selección a través de la estimación conjunta de las elecciones de tipo de barrio y número de viajes. La elección del tipo de barrio consta de 3 alternativas: CBD, Urban y Suburban, según la zona de residencia recogida en las encuestas. Mientras que la elección del número de viajes consta de 4 categorías ordinales: 0 viajes, 1-2 viajes, 3-4 viajes y 5 o más viajes. A partir de la mejor especificación del modelo ordinal logit. Se desarrolló un modelo joint mixed-ordinal conjunto. Los resultados indican que las variables exógenas requieren un análisis exhaustivo de correlaciones con el fin de evitar resultados sesgados. ha determinado que es importante medir los atributos del BE donde se realiza el viaje, pero también la información municipal es muy explicativa de la movilidad individual. Por tanto, la percepción de las zonas de destino a nivel municipal es considerada importante. En el contexto de la Auto-selección (self-selection) es importante modelizar conjuntamente las decisiones. La Auto-selección existe, puesto que los parámetros estimados conjuntamente son significativos. Sin embargo, sólo ciertos atributos del entorno urbano son igualmente importantes sobre la elección de la zona de residencia y frecuencia de viajes. Para analizar la Propensión al Viaje, se desarrolló un modelo híbrido, formado por: una variable latente, un indicador y un modelo de elección discreta. La variable latente se denomina “Propensión al Viaje”, cuyo indicador en ecuación de medida es el número de viajes; la elección discreta es el tipo de tour. El modelo de elección consiste en 5 alternativas, según la jerarquía de actividades establecida en la tesis: HOME, no realiza viajes durante el día de estudio, HWH tour cuya actividad principal es el trabajo o estudios, y no se realizan paradas intermedias; HWHs tour si el individuo reaiza paradas intermedias; HOH tour cuya actividad principal es distinta a trabajo y estudios, y no se realizan paradas intermedias; HOHs donde se realizan paradas intermedias. Para llegar a la mejor especificación del modelo, se realizó un trabajo importante considerando diferentes estructuras de modelos y tres tipos de estimaciones. De tal manera, se obtuvieron parámetros consistentes y eficientes. Los resultados muestran que la modelización de los tours, representa una ventaja sobre la modelización de los viajes, puesto que supera las limitaciones de espacio y tiempo, enlazando los viajes realizados por la misma persona en el día de estudio. La propensión al viaje (PT) existe y es específica para cada tipo de tour. Los parámetros estimados en el modelo híbrido resultaron significativos y distintos para cada alternativa de tipo de tour. Por último, en la tesis se verifica que los modelos híbridos representan una mejora sobre los modelos tradicionales de elección discreta, dando como resultado parámetros consistentes y más robustos. En cuanto a políticas de transporte, se ha demostrado que los atributos del entorno urbano son más importantes que los LOS (Level of Service) en la generación de tours multi-etapas. la presente tesis representa el primer análisis empírico de la relación entre los tipos de tours y la propensión al viaje. El concepto Propensity to Travel ha sido desarrollado exclusivamente para la tesis. Igualmente, el desarrollo de un modelo conjunto RC-Number of trips basado en tres escalas de medida representa innovación en cuanto a la comparación de las escalas geográficas, que no había sido hecha en la modelización de la self-selection. The relationship between built environment (BE) and travel behaviour (TB) has been studied in a number of cases, using several methods - aggregate and disaggregate approaches - and different focuses – trip frequency, automobile use, and vehicle miles travelled and so on. Definitely, travel is generated by the need to undertake activities and obtain services, and there is a general consensus that urban components affect TB. However researches are still needed to better understand which components of the travel behaviour are affected most and by which of the urban components. In order to fill the gap in the research, the present dissertation faced two main objectives: (1) To contribute to the better understanding of the relationship between travel demand and urban environment. And (2) To develop an econometric model for estimating travel demand with urban environment attributes. With this purpose, the present thesis faced an exhaustive research and computation of land-use variables in order to find the best representation of BE for modelling trip frequency. In particular two empirical analyses are carried out: 1. Estimation of three dimensions of travel demand using dimensions of urban environment. We compare different travel dimensions and geographical scales, and we measure self-selection contribution following the joint models. 2. Develop a hybrid model, integrated latent variable and discrete choice model. The implementation of hybrid models is new in the analysis of land-use and travel behaviour. BE and TB explicitly interact and allow richness information about a specific individual decision process For all empirical analysis is used a data-base from a survey conducted in 2006 and 2007 in Madrid. Spatial attributes describing neighbourhood environment are derived from different data sources: National Institute of Statistics-INE (Administrative: municipality and district) and GIS (circular units). INE provides raw data for such spatial units as: municipality and district. The construction of census units is trivial as the census bureau provides tables that readily define districts and municipalities. The construction of circular units requires us to determine the radius and associate the spatial information to our households. The first empirical part analyzes trip frequency by applying an ordered logit model. In this part is studied the effect of socio-economic, transport and land use characteristics on two travel dimensions: trip frequency and type of tour. In particular the land use is defined in terms of type of neighbourhoods and types of dwellers. Three neighbourhood representations are explored, and described three for constructing neighbourhood attributes. In particular administrative units are examined to represent neighbourhood and circular – unit representation. Ordered logit models are applied, while ordinal logit models are well-known, an intensive work for constructing a spatial attributes was carried out. On the other hand, the second empirical analysis consists of the development of an innovative econometric model that considers a latent variable called “propensity to travel”, and choice model is the choice of type of tour. The first two specifications of ordinal models help to estimate this latent variable. The latent variable is unobserved but the manifestation is called “indicators”, then the probability of choosing an alternative of tour is conditional to the probability of latent variable and type of tour. Since latent variable is unknown we fit the integral over its distribution. Four “sets of best variables” are specified, following the specification obtained from the correlation analysis. The results evidence that the relative importance of SE variables versus BE variables depends on how BE variables are measured. We found that each of these three spatial scales has its intangible qualities and drawbacks. Spatial scales play an important role on predicting travel demand due to the variability in measures at trip origin/destinations within the same administrative unit (municipality, district and so on). Larger units will produce less variation in data; but it does not affect certain variables, such as public transport supply, that are more significant at municipality level. By contrast, land-use measures are more efficient at district level. Self-selection in this context, is weak. Thus, the influence of BE attributes is true. The results of the hybrid model show that unobserved factors affect the choice of tour complexity. The latent variable used in this model is propensity to travel that is explained by socioeconomic aspects and neighbourhood attributes. The results show that neighbourhood attributes have indeed a significant impact on the choice of the type of tours either directly and through the propensity to travel. The propensity to travel has a different impact depending on the structure of each tour and increases the probability of choosing more complex tours, such as tours with many intermediate stops. The integration of choice and latent variable model shows that omitting important perception and attitudes leads to inconsistent estimates. The results also indicate that goodness of fit improves by adding the latent variable in both sequential and simultaneous estimation. There are significant differences in the sensitivity to the latent variable across alternatives. In general, as expected, the hybrid models show a major improvement into the goodness of fit of the model, compared to a classical discrete choice model that does not incorporate latent effects. The integrated model leads to a more detailed analysis of the behavioural process. Summarizing, the effect that built environment characteristics on trip frequency studied is deeply analyzed. In particular we tried to better understand how land use characteristics can be defined and measured and which of these measures do have really an impact on trip frequency. We also tried to test the superiority of HCM on this field. We can concluded that HCM shows a major improvement into the goodness of fit of the model, compared to classical discrete choice model that does not incorporate latent effects. And consequently, the application of HCM shows the importance of LV on the decision of tour complexity. People are more elastic to built environment attributes than level of services. Thus, policy implications must take place to develop more mixed areas, work-places in combination with commercial retails.
Resumo:
Several international studies have analyzed the acceptability of road pricing schemes by means of an attitude survey in combination with the results of a stated choice experiment using both a descriptive analysis and a discrete-choice model with binary choice (?accept? or ?not accept? the toll). However, the use of hybrid discrete choice models constitutes an innovative alternative for integrating subjective attitudes and perceptions deriving from the survey of attitudes with the more objective variables from the stated choice experiment. This paper analyzes the results of applying these models to measure the acceptability of interurban road pricing among different groups of stakeholders (road freight and passenger operators, highway concessionaires, and associations of private car users) with qualitatively significant opinions on road pricing measures. Our results show that hybrid models are better suited to explaining the acceptability of a road pricing scheme by different groups of stakeholders than a separate analysis of the survey of attitudes and a discrete-choice model applied on a stated choice experiment. A particular finding was that the strong psycho-social latent variable of the perception of fairness explains the rejection or acceptance of a toll scheme by road stakeholders.
Resumo:
To develop effective cycling policies, decision makers and administrators should know the factors influencing the use of the bicycle for daily mobility. Traditional discrete choice models tend to be based on variables such as time and cost, which do not sufficiently explain the choice of the bicycle as a mode of transportation. Because psychological factors have been identified as particularly influential in the decision to commute by bicycle, this paper examines the perceptions of cycling factors and their influence on commuting by bicycle. Perceptions are measured by attitudes, other psychological variables, and habits. Statistical differences in the variables are established in relation to the choice of commuting mode and bicycle experience (commuter, sport-leisure, no use). Doing so enables the authors to identify the main barriers to commuting by bicycle and to make recommendations for cycling policies. Two underlying structures (factors) of the attitudinal variables are identified: direct benefits and long-term benefits. Three other factors are related to variables of difficulty: physical conditions, external facilities, and individual capacities. The effect of attitudes and other psychological variables on people's decision to cycle to work-place of study is tested by using a logit model. In the case study of Madrid, Spain, the decision to cycle to work-place of study is heavily influenced by cycling habits (for noncommuting trips). Because bicycle commuting is not common, attitudes and other psychological variables play a less important role in the use of bikes.
Resumo:
To develop effective cycling policies, decision makers and administrators should know the factors influencing the use of the bicycle for daily mobility. Traditional discrete choice models tend to be based on variables such as time and cost, which do not sufficiently explain the choice of the bicycle as a mode of transportation. Because psychological factors have been identified as particularly influential in the decision to commute by bicycle, this paper examines the perceptions of cycling factors and their influence on commuting by bicycle. Perceptions are measured by attitudes, other psychological variables, and habits. Statistical differences in the variables are established in relation to the choice of commuting mode and bicycle experience (commuter, sport–leisure, no use). Doing so enables the authors to identify the main barriers to commuting by bicycle and to make recommendations for cycling policies. Two underlying structures (factors) of the attitudinal variables are identified: direct benefits and long-term benefits. Three other factors are related to variables of difficulty: physical conditions, external facilities, and individual capacities. The effect of attitudes and other psychological variables on people’s decision to cycle to work–place of study is tested by using a logit model. In the case study of Madrid, Spain, the decision to cycle to work– place of study is heavily influenced by cycling habits (for noncommuting trips). Because bicycle commuting is not common, attitudes and other psychological variables play a less important role in the use of bikes.
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.
Resumo:
In order to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. Transport modelling literature has been increasingly aware that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users’ social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced; but links between international and Spanish perspectives are rarely dealt with. The overall objective of the thesis is to develop a stepped methodology that integrate diverse perspectives to evaluate the willingness to change patterns of urban mobility in Madrid, based on four steps: (1st) analysis of causal relationships between both objective and subjective personal variables, and travel behavior to capture pro-car and pro-public transport intentions; (2nd) exploring the potential influence of individual trip characteristics and social influence variables on transport mode choice; (3rd) identifying built environment dimensions on travel behavior; and (4th) exploring the potential influence on transport mode choice of extrinsic characteristics of individual trip using panel data, land use variables using spatial characteristics and social influence variables. The data used for this thesis have been collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) carried out in Madrid. Although the steps above are mainly methodological, the application to the area of Madrid allows deriving important results that can be directly used to forecast travel demand and to evaluate the benefits of specific policies that might be implemented in the area. The results demonstrated, respectively: (1st) transport policy actions are more likely to be effective when pro-car intention has been disrupted first; (2nd) the consideration of “helped” and “voluntary” users as tested here could have a positive and negative impact, respectively, on the use of public transport; (3rd) the importance of density, design, diversity and accessibility underlying dimensions responsible for land use variables; and (4th) there are clearly different types of combinations of social interactions, land use and time frame on travel behavior studies. Finally, with the objective to study the impact of demand measures to change urban mobility behavior, those previous results have been considered in a unique way, a hybrid discrete choice model has been used on a 5th step. Then it can be concluded that urban mobility behavior is not only ruled by the maximum utility criterion, but also by a strong psychological-environment concept, developed without the mediation of cognitive processes during choice, i.e., many people using public transport on their way to work do not do it for utilitarian reasons, but because no other choice is available. Regarding built environment dimensions, the more diversity place of residence, the more difficult the use of public transport or walking.
Resumo:
La sostenibilidad de los sistemas olivareros situados en zonas de pendiente y montaña (SMOPS) en Andalucía se encuentra actualmente amenazada por las elevadas tasas de abandono que afectan a estos sistemas productivos. Así, la consumación de este proceso de abandono, no sólo pondría en peligro a las propias explotaciones, sino a todo el conjunto de bienes y servicios no productivos y al patrimonio cultural generado por este sistema productivo. En este contexto, la búsqueda de alternativas políticas enfocadas a revertir este proceso se erige como una necesidad categórica en aras de garantizar en el largo plazo la sostenibilidad de los olivares de montaña. Esta tesis pretende hacer frente a esta necesidad a través de la construcción de un marco político alternativo para los SMOPS, que permita la integración simultánea de todas las dimensiones que pueden influir en su desarrollo; esto es: el marco político actual, principalmente determinado por la Política Agraria Común (PAC) de la Unión Europea (UE); las preferencias de la sociedad hacia la oferta de bienes y servicios públicos generados por los SMOPS; y las preferencias y voluntad de innovación hacia nuevos manejos y sistemas de gestión de los agricultores y propietarios de las explotaciones. Para ello, se emplea una metodología de investigación mixta, que abarca la realización de cuatro encuestas (personales y online) llevadas a cabo a los agentes o grupos de interés involucrados directa o indirectamente en la gestión de los SMOPS –ciudadanos, agricultores y propietarios y expertos-; una profunda revisión de las herramientas de política agroambiental actuales y posibles alternativas a las mismas; y el desarrollo de nuevas estrategias metodológicas para dotar de mayor precisión y fiabilidad las estimaciones obtenidas a partir del Método del Experimento de Elección (MEE) en el campo de la valoración medioambiental. En general, los resultados muestran que una estrategia de política agroambiental basada en la combinación de los Contratos Territoriales de Zona Rural (CTZR) y el manejo ecológico supondría una mejora en la sostenibilidad de los sistemas olivareros de montaña andaluces, que, al mismo tiempo, propiciaría una mejor consideración de las necesidades y demandas de los agentes implicados en su gestión. Asimismo, los hallazgos obtenidos en esta investigación demandan un cambio de paradigma en los actuales pagos agroambientales, que han de pasar de una estrategia basada en la implementación de acciones, a otra enfocada al logro de objetivos, la cual, en el caso del olivar, se podría centrar en el aumento del secuestro de carbono en el suelo. Desde un punto de vista metodológico, los resultados han contribuido notablemente a mejorar la fiabilidad y precisión de las conclusiones estimadas a partir del MEE, mediante el diseño de un novedoso proceso iterativo para detectar posibles comportamientos inconsistentes por parte de los entrevistados con respecto a su máxima Disposición al Pago (DAP) para lograr la situación considerada como “óptima” en los olivares ecológicos de montaña andaluces. En líneas generales, el actual marco institucional favorece la puesta en práctica de la mayoría de las estrategias propuestas en esta tesis; sin embargo son necesarios mayores esfuerzos para reconducir los actuales Pagos Agroambientales y Climáticos de la PAC, hacia una estrategia de política agroambiental adaptada a las necesidades y requisitos del territorio en el que se aplica, enfocada al logro de objetivos y que sea capaz de integrar y coordinar al conjunto de agentes y grupos de interés involucrados -directa o indirectamente- en la gestión de los olivares de montaña. En este contexto, se espera que la puesta en práctica de nuevas estructuras y acuerdos de gobernanza territorial juegue un importante papel en el desarrollo de una política agroambiental realmente adaptada a las necesidades de los sistemas olivareros de montaña andaluces. ABSTRACT The long-term sustainability of Andalusian sloping and mountainous olive production systems (SMOPS) is currently threatened by the high abandonment rates that affect these production systems. The effective occurrence of this abandonment process is indeed menacing not only farms themselves, but also the wide array of public goods and services provided by SMOPS and the cultural heritage held by this production system. The search of policy alternatives aimed at tackling this process is thus a central necessity. This thesis aims to undertake this necessity by building an alternative policy framework for SMOPS that simultaneously integrates the several dimensions that are susceptible to influence it, namely: the current policy framework, mainly determined by the European Union’s (EU) Common Agricultural Policy (CAP); the social preferences toward the supply of SMOPS’ public goods and services; and farmers’ preferences and willingness to innovate toward new management practices in their farms. For this purpose, we put into practice a mixed-method strategy that combines four face-to-face and online surveys carried out with SMOPS’ stakeholders -including citizens, farmers and experts-; in-depth analysis of current and alternative agrienvironmental policy (AEP) instruments; and the development of novel methodological approaches to advance toward more reliable Discrete Choice Experiment’s (DCE) outcomes in the field of environmental valuation. Overall, results show that a policy strategy based on the combination of Territorial Management Contracts (TMC) and organic management would further enhance Andalusian SMOPS’ sustainability by simultaneously taking into account stakeholders’ demands and needs. Findings also call for paradigm shift of the current action-oriented design of Agri-Environmental-Climate Schemes (AECS), toward a result-based approach, that in the case of olive orchards should particularly be focused on enhancing soil carbon sequestration. From a methodological perspective, results have contributed to improve the accuracy and feasibility of DCE outcomes by designing a novel and iterative procedure focused in ascertaining respondents’ inconsistent behaviour with respect to their stated maximum WTP for the attainment of an ideal situation to be achieved in organic Andalusian SMOPS. Generally, the present institutional framework favours the implementation of the main policy strategies proposed in this thesis, albeit further efforts are required to better conduct current CAP’s agri-environmental instruments toward a territorially targeted result-oriented strategy capable to integrate and coordinate the whole set of stakeholders involved in the management of SMOPS. In this regard, alternative governance structures and arrangements are expected to play a major role on the process of tackling SMOPS’ agri-environmental policy challenge.
Resumo:
El papel del precio en el sector turístico es especialmente complejo debido a la heterogeneidad existente entre los turistas y, por tanto, a las distintas sensibilidades al precio que muestran. En este sentido, el presente trabajo propone la utilización de modelos de elección discreta para identificar las sensibilidades individuales, turista a turista, y, a continuación, utilizar dichas estimaciones como punto de partida para detectar grupos de turistas con una respuesta similar a los precios. La aplicación empírica realizada en el contexto de la Comunidad Valenciana permite detectar tres segmentos: turistas de precio bajo, turistas indiferentes al precio y turistas de precio alto.
Resumo:
We model and test the relationship between social and commercial entrepreneurship drawing on social capital theory. We propose that the country prevalence rate of social entrepreneurship is an indicator of constructible nation-level social capital and enhances the likelihood of individual commercial entry. We further posit that both social and commercial entrepreneurial entry is facilitated by certain formal institutions, namely strong property rights and (low) government activism, albeit the latter impacts each of these types of entrepreneurship differently. We apply bivariate discrete choice multilevel modeling to population-representative samples in 47 countries and find support for these hypotheses. © 2013 Baylor University.
GPs' implicit prioritization through clinical choices – evidence from three national health services
Resumo:
Acknowledgments The authors are grateful for valuable comments and inputs from participants at a series of seminars and conferences as well as to our three anonymous referees.
Resumo:
This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.
In the second essay, “A Framework for Estimating Persistence of Local Labor
Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.
In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.
Resumo:
My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.
The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.
The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading
due to misclassification of unemployment.
Resumo:
The Greater Everglades system imparts vital ecosystem services (ES) to South Florida residents including high quality drinking water supplies and a habitat for threatened and endangered species. As a result of the altered Everglades system and regional dynamics, restoration may either improve the provision of these services or impose a tradeoff between enhanced environmental goods and services and competing societal demands. The current study aims at understanding public preferences for restoration and generating willingness to pay (WTP) values for restored ES through the implementation of a discrete choice experiment. A previous study (Milon et al., 1999) generated WTP values amongst Floridians of up to $3.42 -$4.07 billion for full restoration over a 10-year period. We have collected data from 2,905 respondents taken from two samples who participated in an online survey designed to elicit the WTP values for selected ecological and social attributes included in the earlier study (Milon et al. 1999). We estimate that the Florida general public is willing to pay up to $854.1- $954.1 million over 10 years to avoid restrictions on their water usage and up to $90.8- $183.7 million over 10 years to restore the hydrological flow within the Water Conservation Area.