932 resultados para Discharge lamp
Resumo:
Nursing discharge planning for elderly medical inpatients is an essential element of care to ensure optimal transition to home and to reduce post-discharge adverse events. The objectives of this cross-sectional study were to investigate the association between nursing discharge planning components in older medical inpatients, patients' readiness for hospital discharge and unplanned health care utilization during the following 30 days. Results indicated that no patients benefited from comprehensive discharge planning but most benefited from less than half of the discharge planning components. The most frequent intervention recorded was coordination, and the least common was patients' participation in decisions regarding discharge. Patients who received more nursing discharge components felt significantly less ready to go home and had significantly more readmissions during the 30-day follow-up period. This study highlights large gaps in the nursing discharge planning process in older medical inpatients and identifies specific areas where improvements are most needed.
Resumo:
Early readmission is the major success indicator of the transition between hospital and home. Patients admitted with heart failure reach a 20% rate. Potentially avoidable readmissions, defined as unpredictable and related to a known condition during index hospitalization, represent the improvement margin. For these latter, implementation of specific interventions can be effective. Complex interventions on transition, including several modalities and seeking to encourage patient autonomy seem more effective than others. We describe two models: a pragmatic one developed in a regional hospital, and a more complex one developed in a university hospital during the LEAR-HF study. In both cases, it is imperative to work on "medical liability": should it extend beyond discharge up to the threshold of the private practice?
Resumo:
The pulsed dielectric barrier discharge (PDBD) and pulsed corona discharge (PCD) were compared for their efficiency to degrade phenol in water solution. Results show that PCD has higher efficiency than PDBD to degrade phenol. When initial pH of water solution was elevated, phenol degradation in the PCD reactor was significantly enhanced, although no considerable effect was seen in the PDBD reactor. The PCD reactor was also able to degrade lignin significantly, both in synthetically prepared solution and in pulp and paper mill wastewater. Water temperature did not affect phenol degradation; however, lignin was better oxidized at lower temperature.
Resumo:
Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.
Resumo:
Spherical carbon coated iron particles of nanometric diameter in the 5-10 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 5-8·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5-300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging-MRI-, hyperthermia).
Resumo:
The complex permittivity of films of polyether ether ketone (PEEK) has been investigated over a wide range of frequency. There is no relaxation peak in the range of 1Hz to 10(5) Hz but in the low-frequency side (10-4 Hz) there is an evidence of a peak that also can be observed by thermally stimulated discharge current measurements. That peak is related with the glass transition temperature (Tg) of the polymer. The activation energy of the relaxation was found to be 0.44 eV, similar to that of several synthetic polymers. Space charges are important in the conduction mechanism as shown by discharging transient.
Resumo:
OBJECTIVE: to evaluate discharge in a group of patients with cutaneous melanoma according to recently established criteria. METHODS: we conducted an observational, cross-sectional study with 32 patients at the Hospital Universitário Clementino Fraga Filho (HUCFF) / Universidade Federal do Rio de Janeiro (UFRJ), between 1995 and 2013, in the following stages: IA (17 cases, 53.12%), IB (4 cases, 12.5%), IIA (3 cases, 9.37%), IIC (1 case, 3.12%), IIIB (1 case, 3.12%), IIIC (3 cases, 9.37%), melanomas in situ (2 cases, 6.25%), Tx (1 case, 3.12%). RESULTS: the follow-up time varied from one to 20 years (stage IA), five to 15 years (stage IB), six to 17 years (stage IIA), 20 years (stage IIC), 23 years (stage IIIB) and 14 to 18 years (stage IIIC). One melanoma in situ (subungueal) was discharged in the fourth year of follow-up and the other was promptly discharged. The Tx melanoma was followed for 12 years. We observed no relapses or recurrences in the period. CONCLUSION: although a controversial issue, it was possible to endorse the discharge of the patients since our follow-up time had already exceeded the one recommended by the other authors.
Resumo:
This paper reports on the development and validation of a loop-mediated isothermal amplification assay (LAMP) for the rapid and specific detection of Actinobacillus pleuropneumoniae (A. pleuropneumoniae). A set of six primers were designed derived from the dsbE-like gene of A.pleuropneumoniae and validate the assay using 9 A. pleuropneumoniae reference/field strains, 132 clinical isolates and 9 other pathogens. The results indicated that positive reactions were confirmed for all A. pleuropneumoniae strains and specimens by LAMP at 63ºC for 60 min and no cross-reactivity were observed from other non-A.pleuropneumoniae including Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Bordetella bronchiseptica, Streptococcus suis, Salmonella enterica, Staphylococcus, porcine reproductive and respiratory syndrome virus (PRRSV), and Pseudorabies virus. The detection limit of the conventional PCR was 10² CFU per PCR test tube, while that of the LAMP was 5 copies per tube. Therefore, the sensitivity of LAMP was higher than that of PCR. Moreover, the LAMP assay provided a rapid yet simple test of A. pleuropneumoniae suitable for laboratory diagnosis and pen-side detection due to ease of operation and the requirement of only a regular water bath or heat block for the reaction.
Resumo:
Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP) assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.
Resumo:
The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Larsmo-Öjasjön i Österbotten skapades genom invallningar på 1960-talet pga. industrins behov av sötvatten. Sedan dess har vattenområdet drabbats av återkommande försurning och fiskdöd, och invallningen har ofta beskyllts för problemen. Avhandlingen undersöker syrabelastningen i området; bl.a. hur markanvändning, hydrologi och klimatförändringen påverkar belastningen. Konsekvenserna undersöks med fiskyngel som bioindikator, och olika miljömetoder testas och diskuteras. Ökad kunskap om försurningen hjälper oss att tillämpa effektiva miljömetoder och få förbättrad vattenkvalitet i framtiden. Den primära orsaken till den försämrade vattenkvaliteten under de senaste 40 åren är intensiv dikning av svavelrika sediment. Detta leder till oxidering av svavlet till svavelsyra och uppkomst av sura sulfatjordar. Syran löser upp mängder med toxiska metaller som spolas ut i vattendragen. Undersökningen visar att tiotusentals ton svavelsyra tillsammans med stora mängder metaller rinner till Larsmo-Öjasjön per år från sura sulfatjordar. Åarna bidrar med mest belastning, men den sammanlagda belastningen från de otaliga dikena och bäckarna är oväntat stor. Andra potentiella källor till försurningen, t.ex. muddringar och humussyror, beräknas vara obetydliga. Syra- och metallbelastningen varierar kraftigt med hydrologin, dvs. störst belastning sker under vår- och höstflöden. En eventuell klimatförändring kan ändra på avrinningsmönstret och orsaka mera belastning vintertid. Den årligt återkommande syra- och metallbelastningen kan ofta hindra lakens förökning, vilket kan ha större långtgående konsekvenser för fiskpopulationerna än de relativt sällsynta stora surchockerna med synlig fiskdöd. För att förebygga skador på vattendragen bör man undvika att dränera svavelrika sedimenten. På redan existerande sura sulfatjordar visade sig kontroll av grundvattennivån kunna möjliggöra en effektiverad markanvändning utan märkbart ökade miljökonsekvenser.
Resumo:
The oxidation potential of pulsed corona discharge concerning aqueous impurities is limited in respect to certain refractory compounds. This may be enhanced in combination of the discharge with catalysis/photocatalysis as developed in homogeneous gas-phase reactions. The objective of the work consists of testing the hypothesis of oxidation potential enhancement in combination of the discharge with TiO2 photocatalysis applied to aqueous solutions of refractory oxalate. Meglumine acridone acetate was included for meeting the practical needs. The experimental research was undertaken into oxidation of aqueous solutions under conditions of various target pollutant concentrations, pH and the pulse repetition rate with plain electrodes and the electrodes with TiO2 attached to their surface. The results showed no positive influence of the photocatalyst, the pollutants were oxidized with the rate identical within the accuracy of measurements. The possible explanation for the observed inefficiency may include low UV irradiance, screening effect of water and generally low oxidation rate in photocatalytic reactions. Further studies might include combination of electric discharge with ozone decomposition/radical formation catalysts.