961 resultados para Dipping fluids.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current analytical work on the effect of convection and viscoelasticity on the early and late stages of spinodal decomposition is briefly described. In the early stages, the effect of viscoelastic stresses was analysed using a simple Maxwell model for the stress, which was incorporated in the Langevin equation for the momentum field. The viscoelastic stresses are found to enhance the rate of decomposition. In the late stages, the pattern formed depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport does not have a significant effect on the growth of a single droplet, but it does result in an attractive interaction between non - Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near symmetric quench was analysed using an 'area distribution function', which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density distribution, fluid structure and solvation forces for fluids confined in Janus slit-shaped pores are investigated using grand canonical Monte Carlo simulations. By varying the degree of asymmetry between the two smooth surfaces that make up the slit pores, a wide variety of adsorption situations are observed. The presence of one moderately attractive surface in the asymmetric pore is sufficient to disrupt the formation of frozen phases observed in the symmetric case. In the extreme case of asymmetry in which one wall is repulsive, the pore fluid can consist of a frozen contact layer at the attractive surface for smaller surface separations (H) or a frozen contact layer with liquid-like and gas-like regions as the pore width is increased. The superposition approximation, wherein the solvation pressure and number density in the asymmetric pores can be obtained from the results on symmetric pores, is found to be accurate for H > 4 sigma(ff), where sigma(ff) is the Lennard-Jones fluid diameter and within 10% accuracy for smaller surface separations. Our study has implications in controlling stick slip and overcoming static friction `stiction' in micro and nanofluidic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally known that addition of conducting or insulating particles to mineral transformer oil, lowers its breakdown strength, E-d. However, if the particulates are of molecular dimensions, or nanoparticles, (NPs), as they are called, the breakdown strength is seen to increase considerably. Recent experiments by the authors on oil cooled power equipment such as transformers showed that, nanofluids comprising NPs of selected oxides of iron, such as Fe(3)o(4), called magnetite, added to transformer oil increased the breakdown voltage of the virgin oil and more importantly a remarkable enhancement in the thermal conductivity and the viscosity and hence an increased loadability of the transformer for a given top oil temperature (TOT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO2 mixtures. With this mixture, real cycle efficiencies of 15-18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersions of nanodiamond (average size similar to 6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model. The temperature dependence of the dynamic viscosity obeys an Arrhenius-like behavior, where the activation energy and the pre-exponential factor have an exponential dependence on the filler fraction of nanodiamonds. An enhancement in thermal conductivity up to 70% is reported for nanodiamond based thermal fluids. Additional electron microscopy, Raman spectroscopy and X-ray diffraction analysis support the experimental data and their interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform two and three dimensional numerical simulations of plume formation in density and viscosity stratified fluid systems. We show that the ambient to plume fluid viscosity ratio strongly affects the near wall plume structures (line or sheet plumes) such as plume spacing and shape of plumes. We observe that where mushroom-like plumes are observed for lower viscosity ratios, taller plumes with bulbous heads form for high viscosity ratios. Plume structure and spacing are in good agreement with experimental results. By studying the geometry of the line plumes and the flow in the circulation cells, we discuss the mechanisms of their formation and the dynamics of merging. We show that an increase in the viscosity ratio decreases the total length of line plumes in the planform which indicates a decreased mixing at higher viscosity ratios. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in 7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a numerical study of flow of shear thinning viscoelastic fluids in rectangular lid driven cavities for a wide range of aspect ratios (depth to width ratio) varying from 1/16 to 4. In particular, the effect of elasticity, inertia, model parameters and polymer concentration on flow features in rectangular driven cavity has been studied for two shear thinning viscoelastic fluids, namely, Giesekus and linear PTT. We perform numerical simulations using the symmetric square root representation of the conformation tensor to stabilize the numerical scheme against the high Weissenberg number problem. The variation in flow structures associated with merging and splitting of elongated vortices in shallow cavities and coalescence of corner eddies to yield a second primary vortex in deep cavities with respect to the variation in flow parameters is discussed. We discuss the effect of the dominant eigenvalues and the corresponding eigenvectors on the location of the primary eddy in the cavity. We also demonstrate, by performing numerical simulations for shallow and deep cavities, that where the Deborah number (based on convective time scale) characterizes the elastic behaviour of the fluid in deep cavities, Weissenberg number (based on shear rate) should be used for shallow cavities. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3-dimensiqnal incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinu