982 resultados para Dimension reduction
Resumo:
In a mini review from 2002, Tyler Jacks and Robert Weinberg commented on the pioneering three-dimensional (3D) culture work from Bissell laboratories and concluded: “Suddenly the study of cancer cells in two dimensions seems quaint if not archaic.” The relevance of this statement for planning and executing mechanistic biological studies and advanced drug testing has been largely disregarded by both academic researchers and the pharmaceutical and biomedical industry in the twenty-first century.
Resumo:
Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. ---------- Design: Within-subject, counterbalanced, mixed design. ---------- Setting: Institutional. ---------- Participants: 11 healthy, recreationally active male adults. ---------- Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. ---------- Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. ---------- Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. ---------- Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.
Resumo:
This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.
Resumo:
Capacity reduction programs in the form of buybacks or decommissioning programs have had relatively widespread application in fisheries in the US, Europe and Australia. A common criticism of such programs is that they remove the least efficient vessels first, resulting in an increase in average efficiency of the remaining fleet. The effective fishing power of the fleet, therefore, does not decrease in proportion to the number of vessels removed. Further, reduced crowding may increase efficiency of the remaining vessels. In this paper, the effects of a buyback program on average technical efficiency in Australia’s Northern Prawn Fishery are examined using a multi-output distance function approach with an explicit inefficiency model. The results indicate that average efficiency of the remaining vessels was greater than that of the removed vessels, and that average efficiency of remaining vessels also increased as a result of reduced crowding.
The impact of the educational setting on the aesthetic dimension : a study of three drama classrooms
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
Voltage Unbalance (VU) is a power quality issue arising within the low voltage residential distribution networks due to the random location and rating of single-phase rooftop photovoltaic cells (PVs). In this paper, an analysis has been carried out to investigate how PV installations, their random location and power generation capacity can cause an increase in VU. Several efficient practical methods are discussed for VU reduction. Based on this analysis, it has been shown that the installation of a DSTATCOM can reduce VU. In this paper, the best possible location for DSTATCOM and its efficient control method to reduce VU will be presented. The results are verified through PSCAD/EMTDC and Monte Carlo simulations.
Resumo:
Nitrous oxide (N2O) is a potent agricultural greenhouse gas (GHG). More than 50% of the global anthropogenic N2O flux is attributable to emissions from soil, primarily due to large fertilizer nitrogen (N) applications to corn and other non-leguminous crops. Quantification of the trade–offs between N2O emissions, fertilizer N rate, and crop yield is an essential requirement for informing management strategies aiming to reduce the agricultural sector GHG burden, without compromising productivity and producer livelihood. There is currently great interest in developing and implementing agricultural GHG reduction offset projects for inclusion within carbon offset markets. Nitrous oxide, with a global warming potential (GWP) of 298, is a major target for these endeavours due to the high payback associated with its emission prevention. In this paper we use robust quantitative relationships between fertilizer N rate and N2O emissions, along with a recently developed approach for determining economically profitable N rates for optimized crop yield, to propose a simple, transparent, and robust N2O emission reduction protocol (NERP) for generating agricultural GHG emission reduction credits. This NERP has the advantage of providing an economic and environmental incentive for producers and other stakeholders, necessary requirements in the implementation of agricultural offset projects.
Resumo:
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.
Resumo:
The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.
Resumo:
Teaching The Global Dimension (2007) is intended for primary and secondary teachers, pre-service teachers and educators interested in fostering global concerns in the education system. It aims at linking theory and practice and is structured as follows. Part 1, the global dimension, proposes an educational framework for understanding global concerns. Individual chapters in this section deal with some educational responses to global issues and the ways in which young people might become, in Hick’s terms, more “world-minded”. In the first two chapters, Hicks presents first, some educational responses to global issues that have emerged in recent decades, and second, an outline of the evolution of global education as a specific field. As with all the chapters in this book, most of the examples are drawn from the United Kingdom. Young people’s concerns, student teachers’ views and the teaching of controversial issues, comprise the other chapters in this section. Taken collectively, the chapters in Part 2 articulate the conceptual framework for developing, teaching and evaluating a global dimension across the curriculum. Individual chapters in this section, written by a range of authors, explore eight key concepts considered necessary to underpin appropriate learning experiences in the classroom. These are conflict, social justice, values and perceptions, sustainability, interdependence, human rights, diversity and citizenship. These chapters are engaging and well structured. Their common format consists of a succinct introduction, reference to positive action for change, and examples of recent effective classroom practice. Two chapters comprise the final section of this book and suggest different ways in which the global dimension can be achieved in the primary and the secondary classroom.