978 resultados para Diesel particulate matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow maldistribution of the exhaust gas entering a Diesel Particulate Filter (DPF) can cause uneven soot distribution during loading and excessive temperature gradients during the regeneration phase. Minimising the magnitude of this maldistribution is therefore an important consideration in the design of the inlet pipe and diffuser, particularly in situations where packaging constraints dictate bends in the inlet pipe close to the filter, or a sharp diffuser angle. This paper describes the use of Particle Image Velocimetry (PIV) to validate a Computational Fluid Dynamic (CFD) model of the flow within the inlet diffuser of a DPF so that CFD can be used with confidence as a tool to minimise this flow maldistribution. PIV is used to study the flow of gas into a DPF over a range of steady state flow conditions. The distribution of flow approaching the front face of the substrate was of particular interest to this study. Optically clear diffusing cones were designed and placed between pipe and substrate to allow PIV analysis to take place. Stereoscopic PIV was used to eliminate any error produced by the optical aberrations caused by looking through the curved wall of the inlet cone. In parallel to the experiments, numerical analysis was carried out using a CFD program with an incorporated DPF model. Boundary conditions for the CFD simulations were taken from the experimental data, allowing an experimental validation of the numerical results. The CFD model incorporated a DPF model, the cement layers seen in segmented filters and the intumescent matting that is commonly used to pack the filter into a metal casing. The mesh contained approximately 580,000 cells and used the realizable ?-e turbulence model. The CFD simulation predicted both pressure drop across the DPF and the velocity field within the cone and at the DPF face with reasonable accuracy, providing confidence in the use the CFD in future work to design new, more efficient cones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved oxygen (DO) is one of the most important environmental variables of water quality, especially for marine life. Consequently, oxygen is one of the Chemical Quality Elements required for the implementation of European Union Water Framework Directive. This study uses the example of the Ria Formosa, a meso-tidal lagoon on the south coast of Portugal to demonstrate how monitoring of water quality for coastal waters must be well designed to identify symptoms of episodic hypoxia. New data from the western end of the Ria Formosa were compared to values in a database of historical data and in the published literature to identify long-term trends. The dissolved oxygen concentration values in the database and in the literature were generally higher than those found in this study, where episodic hypoxia was observed during the summer. Analysis of the database showed that the discrepancy was probably related with the time and the sites where the samples had been collected, rather than a long-term trend. The most problematic situations were within the inner lagoon near the city of Faro, where episodic hypoxia (<2 mg dm3 DO) occurred regularly in the early morning. These results emphasise the need for a balanced sampling strategy for oxygen monitoring which includes all periods of the day and night, as well as a representative range of sites throughout the lagoon. Such a strategy would provide adequate data to apply management measures to reduce the risk of more persistent hypoxia that would impact on the ecological, important natural resource. economic and leisure uses of this important natural resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the methodology adopted to assess local air quality impact in the vicinity of a coal power plant located in the south of Portugal. Two sampling areas were selected to assess the deposition flux of dust fallout and its potential spatial heterogeneity. The sampling area was divided into two subareas: the inner, with higher sampling density and urban and suburban characteristics, inside a 6-km circle centered on the stacks, and an outer subarea, mainly rural, with lower sampling density within a radius of 20 km. Particulate matter deposition was studied in the vicinity of the coal fired power plant during three seasonal sampling campaigns. For the first one, the average annual flux of dust fallout was 22.51 g/(m2 yr), ranging from 4.20 to 65.94 g/(m2 yr); for the second one was 9.47 g/(m2 yr), ranging from 0.78 to 32.72 g/(m2 yr) and for the last one was 38.42 g/(m2 yr), ranging from 1.41 to 117.48 g/(m2 yr). The fallout during the second campaign turned out to be much lower than for others. This was in part due to meteorological local patterns but mostly due to the fact that the power plant was not working at full power during the second sampling campaign.155

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which airborne particles penetrate into the human respiratory system is determined mainly by their size, with possible health effects. The research over the scientific evidence of the role of airborne particles in adverse health effects has been intensified in recent years. In the present study, seasonal variations of PM10 and its relation with anthropogenic activities have been studied by using the data from UK National Air Quality Archive over Reading, UK. The diurnal variation of PM10 shows a morning peak during 7:00-10:00 LT and an evening peak during 19:00-22:00 LT. 3 The variation between 12:00 and 17:00 LT remains more or less steady for PM10 with the minimum value of similar to 16 mu g m(-3). PM10 and black smoke (BS) concentrations during weekdays were found to be high compared to weekends. A reduction in the concentration of PM10 has been found during the Christmas holidays compared to normal days during December. Seasonal variations of PM10 showed high values during spring compared to other seasons. A linear relationship has been found between PM10 and NO, during March, July, November and December suggesting that most of the PM10 is due to local traffic exhaust emissions. PM10 and SO2 concentrations showed positive correlation with the correlation coefficient of R-2 = 0.65 over the study area. Seasonal variations of SO2 and NOx showed high concentrations during winter and low concentrations during spring. Fraction of BS in PM10 has been found to be 50% during 2004 over the study area. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, studies have shown that the classroom environment is very important for students' health and performance. Thus, the evaluation of indoor air quality (IAQ) in a classroom is necessary to ensure students' well-being. In this paper the emphasis is on airborne concentration of particulate matter (PM) in adult education rooms. The mass concentration of PM10 particulates was measured in two classrooms under different ventilation methods in the University of Reading, UK, during the winter period of 2008. In another study the measurement of the concentration of particles was accompanied with measurements of CO2 concentration in these classrooms but this study is the subject of another publication. The ambient PM10, temperature, relative humidity, wind speed and direction, and rainfall events were monitored as well. In general, this study showed that outdoor particle concentrations and outdoor meteorological parameters were identified as significant factors influencing indoor particle concentration levels. Ventilation methods showed significant effects on air change rate and on indoor/outdoor (I/O) concentration ratios. Higher levels of indoor particulates were seen during occupancy periods. I/O ratios were significantly higher when classrooms were occupied than when they were unoccupied, indicating the effect of both people presence and outdoor particle concentration levels. The concentrations of PM10 indoors and outdoors did not meet the requirements of WHO standards for PM10 annual average.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM 2.5 were made in the outdoor and indoor environment of each NC. The average indoorPM1 andPM 2.5 concentrations were found to be 181.77 μgm−3 and 454.08 μg m−3 respectively, while the corresponding outdoor values were 11.04 μg m−3 and 32.19 μg m−3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. Itwas found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the personal exposure to indoor particulate matters using the intake fraction metric and provided a possible way to trace the particle inhaled from an indoor particle source. A turbulence model validated by the particle measurements in a room with underfloor air distribution (UFAD) system was used to predict the indoor particle concentrations. Inhalation intake fraction of indoor particles was defined and evaluated in two rooms equipped with the UFAD, i.e., the experimental room and a small office. According to the exposure characteristics and a typical respiratory rate, the intake fraction was determined in two rooms with a continuous and episodic (human cough) source of particles, respectively. The findings showed that the well-mixing assumption of indoor air failed to give an accurate estimation of inhalation exposure and the average concentration at return outlet or within the overall room could not relate well the intake fraction to the amount of particle emitted from an indoor source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the metropolitan area of Sao Paulo, Brazil, ozone and particulate matter ( PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors ( nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Janio Quadros and Maria Maluf road tunnels, both located in Sao Paulo. The Janio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Janio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 mu g km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in Sao Paulo tunnels are higher than those found in other cities of the world.