951 resultados para Diesel emissions
Resumo:
This work presents a theoretical and experimental study of the biodiesel (ethyl ester from a waste vegetable oil) performance in a flame tube furnace. The heat transfer rate was analysed in several sections along the furnace and the performance of the biodiesel was compared to that of diesel oil. The flow of heat from the burn of each fuel in the direction of the walls of the combustion chamber was evaluated under the same fuel injection pressure. The peak of the heat transfer occurred around 0.45 m far from the fuel injection nozzle in a 0.305 m inner diameter combustion chamber. The diesel oil showed a higher heat transfer rate in most parts exposed to the flame. In the region where the body of the flame is not present, the heat transfer of biodiesel becomes higher. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.
Resumo:
Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.
Resumo:
An investigation was conducted on pollutants emitted from steady-state, steady-flow gasification and combustion of polyethylene (PE) in a two-stage furnace. The polymer, in pulverized form, was first pyrolyzed at 1000 degrees C, and subsequently, its gaseous pyrolyzates were burned, upon mixing with air at high temperatures (900-1100 degrees C). The motivation for this indirect type of burning PE was to attain nominally premixed combustion of the pyrolyzate gases with air, thereby achieving lower pollutant emissions than those emanating from the direct burning of the solid PE polymer. This work assessed the effluents of the two-stage furnace and examined the effects of the combustion temperature, as well as the polymer feed rate and the associated fuel/air equivalence ratio (0.3 < phi < 1.4). It was found that, whereas the yield of pyrolysis gas decreased with an increasing polymer feed rate, its composition was nearly independent of the feed rate. CO2 emissions peaked at an equivalence ratio near unity, while the CO emissions increased with an increasing equivalence ratio. The total light volatile hydrocarbon and semivolatile polycyclic aromatic hydrocarbon (PAH) emissions of combustion increased with an increasing equivalence ratio. The generated particulates were mostly submicrometer in size. Overall, PAH and soot emissions from this indirect burning of PE were an order of magnitude lower than corresponding emissions from the direct burning of the solid polymer, obtained previously in this laboratory using identical sampling and analytical techniques. Because pyrolysis of this polymer requires a nominal heat input that amounts to only a diminutive fraction of the heat released during its combustion, implementation of this technique is deemed advantageous.
Resumo:
Air transport has become a vital component of the global economy. However, greenhouse-gas emissions from this sector have a significant impact on global climate, being responsible for over 3.5% of all anthropogenic radiative forcing. Also, the accrued visibility of aircraft emissions greatly affects the public image of the industry. In this context, incentive-based regulations, in the form of price or quantity controls, can be envisaged as alternatives to mitigate these emissions. The use of environmental charges in air transport, and the inclusion of the sector in the European Union Emissions Trading Scheme (EU ETS), are considered under a range of scenarios. The impacts of these measures on demand are estimated, and results suggest that they are likely to be minimal-mainly due to the high willingness to pay for air transport. In particular, in the EU ETS scenario currently favoured by the EU, demand reductions are less than 2%. This may not be true in the longer run, for short trips, or if future caps become more stringent. Furthermore, given current estimates of the social Cost Of CO2 as well as typical EU ETS prices, supply-side abatement would be too costly to be encouraged by these policies in the short term. The magnitude of aviation CO2 emissions in the EU is estimated, both in physical and monetary terms; the results are consistent with Eurocontrol estimates and, for the EU-25, the total social cost of these emissions represents only 0.03% of the region`s GDP. It is concluded that the use of multisector policies, such as the EU ETS, is unsuitable for curbing emissions from air transport, and that stringent emission charges or an isolated ETS would be better instruments. However, the inclusion of aviation in the EU ETS has advantages under target-oriented post-2012 scenarios, such as policy-costs dilution, certainty in reductions, and flexibility in abatement allocation. This solution is also attractive to airlines, as it would improve their public image but require virtually no reduction of their own emissions, as they would be fully capable of passing on policy costs to their customers.
Resumo:
The present study examined effects of ear asymmetry, handedness, and gender on distortion-product otoacoustic emissions (DPOAEs) obtained from schoolchildren. A total of 1003 children (528 boys and 475 girls), with a mean age of 6.2 years (SD = 0.4, range = 5.2-7.9 years), were tested in a quiet room at their schools using the GSI-60 DPOAE system. A distortion-product (DP)-gram was obtained for each ear, with f2 varying from 1.1 to 6.0 kHz and the ratio of f2/f1 at 1.21. The signal-to-noise ratios (SNRs) (DPOAE amplitude minus the mean noise floor) at the tested frequencies 1.1, 1.5, 1.9, 2.4, 3.0, 3.8, 4.8, and 6.0 kHz were measured. The results revealed a small but significant difference in SNR between ears, with right ears showing a higher mean SNR than left ears at 1.9, 3.0, 3.8, and 6.0 kHz. At these frequencies, the difference in mean SNR between ears was less than 1 dB. A significant gender effect was also found. Girls exhibited a higher SNR than boys at 3.8, 4.8, and 6.0 kHz. The difference in mean SNR, as a result of the gender effect, was about 1 to 2 dB at these frequencies. There was no significant difference in mean SNR between left-handed and right-handed children for all tested frequencies.
Resumo:
This study examined the test performance of distortion product otoacoustic emissions (DPOAEs) when used as a screening tool in the school setting. A total of 1003 children (mean age 6.2 years, SD = 0.4) were tested with pure-tone screening, tympanometry, and DPOAE assessment. Optimal DPOAE test performance was determined in comparison with pure-tone screening results using clinical decision analysis. The results showed hit rates of 0.86, 0.89, and 0.90, and false alarm rates of 0.52, 0.19, and 0.22 for criterion signal-to-noise ratio (SNR) values of 4, 5, and 11 dB at 1.1, 1.9, and 3.8 kHz respectively. DPOAE test performance was compromised at 1.1 kHz. In view of the different test performance characteristics across the frequencies, the use of a fixed SNR as a pass criterion for all frequencies in DPOAE assessments is not recommended. When compared to pure tone plus tympanometry results, the DPOAEs showed deterioration in test performance, suggesting that the use of DPOAEs alone might miss children with subtle middle ear dysfunction. However, when the results of a test protocol, which incorporates both DPOAEs and tympanometry, were used in comparison with the gold standard of pure-tone screening plus tympanometry, test performance was enhanced. In view of its high performance, the use of a protocol that includes both DPOAEs and tympanometry holds promise as a useful tool in the hearing screening of schoolchildren, including difficult-to-test children.
Resumo:
Researchers have recently reported the effects of age, sex, ear asymmetry, and subject's activity status on transient evoked otoacoustic emissions (TEOAEs). The present study aimed to expand upon such reports by describing the characteristics of TEOAE spectra obtained from a cohort of 607 two-month-old infants in community child health clinics. Results indicated significant sex, ear and activity state effects on the signal:noise ratio, response. whole wave and band reproducibility values. These findings suggest the need for TEOAE normative data to be expressed as a function of sex, ear, and activity state of infants. These characteristics of TEOAE spectra may shape future investigations into appropriate pass-fail criteria for two-month-old infants.
Resumo:
Great potential has recently been demonstrated for the application of transient evoked otoacoustic emissions (TEOAEs) in screening the hearing of school-aged children. The present study aimed to describe the range of TEOAE values obtained from a large cohort of 6-year-old children in school settings. Results indicated significant sex and ear asymmetry effects on signal-to-noise ratio, response, whole wave reproducibility, band reproducibility and noise levels. A prior history of ear infections was also shown to influence response level, whole wave reproducibility and band reproducibility. The sex, ear and history specific normative data tables derived may contribute to future improvements in the accuracy of hearing screening for 6-year-old school children.
Resumo:
A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss ( up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.
Resumo:
This work concerns the influence of industrialized agriculture in the tropics on precipitation chemistry. A total of 264 rain events were sampled using a wet-only collector in central Sao Paulo State, Brazil, between January 2003 and July 2007. Electroneutrality balance calculations (considering H(+), K(+), Na(+), NH(4)(+), Ca(2)(+), Mg(2)(+), Cl(-), NO(3)(-), SO(4)(2-), F(-), PO(4)(3-), H(3)CCOO(-), HCOO(-), C(2)O(4)(2-) and HCO(3)(-)) showed that there was an excess of cations (similar to 15%), which was attributed to the presence of unmeasured organic anion species originating from biomass burning and biogenic emissions. On average, the three ions NH(4)(+), NO(3)(-) and H(+) were responsible for >55% of the total ion concentrations in the rainwater samples. Concentrations (except of H(+)) were significantly higher (t-test; P = 0.05), by between two to six-fold depending on species, during the winter sugar cane harvest period, due to the practice of pre-harvest burning of the crop. Principal component analysis showed that three components could explain 88% of the variance for measurements made throughout the year: PC1 (52%, biomass burning and soil dust resuspension); PC2 (26%, secondary aerosols); PC3 (10%, road transport emissions). Differences between harvest and non-harvest periods appeared to be mainly due to an increased relative importance of road transport/industrial emissions during the summer (non-harvest) period. The volume-weighted mean (VWM) concentrations of ammonium (23.4 mu mol L(-1)) and nitrate (17.5 mu mol L(-1)) in rainwater samples collected during the harvest period were similar to those found in rainwater from Sao Paulo city, which emphasizes the importance of including rural agro-industrial emissions in regional-scale atmospheric chemistry and transport models. Since there was evidence of a biomass burning source throughout the year, it appears that rainwater composition will continue to be affected by vegetation fires, even after sugar cane burning is phased out as envisaged by recent Sao Paulo State legislation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To determine the effect of maternal smoking during pregnancy on transient evoked otoacoustic emissions levels in neonates. Methods: This was a cross-sectional study investigating neonates in the maternity ward of a university hospital in the city of Sao Paulo, Brazil. A total of 418 term neonates without prenatal or perinatal complications were evaluated. The neonates were divided into two groups: a study group, which comprised 98 neonates born to mothers who had smoked during pregnancy; and a control group, which comprised 320 neonates born to mothers who had not. In order to compare the two ears and the two groups in terms of the mean overall response and the mean transient evoked otoacoustic emissions in response to acoustic stimuli delivered at different frequencies, we used analysis of variance with repeated measures. Results: The mean overall response and the mean frequency-specific response levels were lower in the neonates in the study group (p < 0.001). The mean difference between the groups was 2.47 dB sound pressure level (95% confidence interval: 1.47-3.48). Conclusions: Maternal smoking during pregnancy had a negative effect on cochlear function, as determined by otoacoustic emissions testing. Therefore, pregnant women should be warned of this additional hazard of smoking. It is important that smoking control be viewed as a public health priority and that strategies for treating tobacco dependence be devised. (C) 2011 Elsevier Ireland Ltd. All rights reserved.