330 resultados para Diamondback moth
Resumo:
The implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae.
Resumo:
The continuous operation of insect-monitoring radars in the UK has permitted, for the first time, the characterization of various phenomena associated with high-altitude migration of large insects over this part of northern Europe. Previous studies have taken a case-study approach, concentrating on a small number of nights of particular interest. Here, combining data from two radars, and from an extensive suction- and light-trapping network, we have undertaken a more systematic, longer-term study of diel flight periodicity and vertical distribution of macro-insects in the atmosphere. Firstly, we identify general features of insect abundance and stratification, occurring during the 24-hour cycle, which emerge from four years’ aggregated radar data for the summer months in southern Britain. These features include mass emigrations at dusk and to a lesser extent at dawn, and daytime concentrations associated with thermal convection. We then focus our attention on the well-defined layers of large nocturnal migrants that form in the early evening, usually at heights of 200–500 m above ground. We present evidence from both radar and trap data that these nocturnal layers are composed mainly of noctuid moths, with species such as Noctua pronuba, Autographa gamma, Agrotis exclamationis, A. segetum, Xestia c-nigrum and Phlogophora meticulosa predominating.
Resumo:
The bacterium from Pseudomonas putida from Steinernema abbasi and its metabolic secretions caused the mortality of the Galleria mellonella pupae. Experiments were conducted in sand and filter paper on time exposure, temperature, moisture, dose and time of penetration of bacterium in pupae and tested stored or dried toxic metabolites using G. mellonella pupae as a test target organism. Death of pupae was probably due to the toxic metabolites. Pseudomonas putida cells were recovered from the haemocoele when bacterial cells were applied to the G. mellonella pupae indicating that bacterial cells can enter the haemocoele in the absence of nematode vector. Penetration of bacterium was found rapidly after application on G. mellonella pupae. Pseudomonas putida or its toxic secretions can be used as a microbial control for insect control. The experimental results indicate that there is possibility of using P. putida and its toxic secretions as a biopesticide and can contribute in the development of new microbial and biological control against insect pests.
Resumo:
Impatiens noli-tangere is scarce in the UK and probably only native to the Lake District and Wales. It is the sole food plant for the endangered moth Eustroma reticulattum. Significant annual fluctuations in the size of I. noli-tangere populations endanger the continued presence of E. reticulatum in the UK. In this study, variation in population size was monitored across native populations of L noli-tangere in the English Lake District and Wales. In 1998, there was a crash in the population size of all metapopulations in the Lake District but not of those found in Wales. A molecular survey of the genetic affinities of samples in 1999 from both regions and a reference population from Switzerland was performed using AFLP and ISSR analyses. The consensus UPGMA dendrogram and a PCO scatter plot revealed clear differentiation between the populations of L noli-tangere in Wales and those in the Lake District. Most of the genetic variation in the UK (H-T= 0.064) was partitioned between (G(ST) = 0.455) rather than within (H-S = 0.034) regions, inferring little gene flow occurs between regions. There was similar bias towards differentiation between metapopulations in Wales, again consistent with low levels of interpopulation gene flow. This contrasts with far lower levels of differentiation in the Lake District which suggests modest rates of gene flow may occur between populations. It is concluded that in the event of local extinction of sites or populations, reintroductions should be restricted to samples collected from the same region. We then surveyed climatic variables to identify those most likely to cause local extinctions. Climatic correlates of population size were sought from two Lake District metapopulations situated close to a meteorological station. A combination of three climatic variables common to both sites explained 81-84% of the variation in plant number between 1990 and 2001. Projected trends for these climatic variables were used in a Monte Carlo simulation which suggested an increased risk of I. noli-tangere population crashes by 2050 at Coniston Water. but not at Derwentwater. Implications of these findings for practical conservation strategies are explored. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Larvae of the pine beauty moth Panolis flammae (Denis & Schiffermuller) were reared in sleeve cages on five different seed origins (provenances) of pole stage Pinus contorta in the field in each of four years from 1985 to 1988. Survival varied significantly between the years. In those years when survival was high, significant differences between tree provenance were not found. However, between provenance significant differences were found in larval weight and stage of development. In the years when survival was low, the results seen in good years were reversed. Significant differences attributable to provenance were found but these were not reflected in significant differences between larval weight or development. In addition, there was a significant correlation between the proportion surviving and larval weight, which was not the case in those years where larval survival was high. The results are discussed in light of the pest status of P, flammea in Britain and in view of current silvicultural policies. The use of trees resistant to insect attack as part of an integrated pest management programme is highlighted and the need to coordinate laboratory and field studies so as to control for environmental variation discussed.
Resumo:
Pine beauty moth (Panolis flammea D&S, Lepidoptera: Noctuidae) were reared individually from egg hatch to pupation on one of three host plants, Pinus sylvestris (native host plant), Pinus contorta (Central Interior seed origin - good quality introduced host) and P. contorta (Alaskan seed origin - poor quality introduced host). After emerging from the pupae the adult moths were confined to a Skeena River seed origin of P. contorta. Female pupal weight and adult life span were significantly higher on P. sylvestris than on the two lodgepole pine seed origins. Development time was, however, not significantly different between treatments, but larval mean relative growth rate was found to be negatively correlated with birth weight and positively correlated with pupal weight. The time to emerge from the pupa was also not significantly different between treatments. However, there were marked differences between the genders. Male moths lost a significantly greater proportion of their weight over the pupal stage but lived significantly longer as adults than the females. Female moths emerged from the pupal stage significantly sooner than male moths. There was no apparent advantage of lai-ge birth size when looked at in terms of subsequent performance. These results are discussed in light of current life history theory.
Resumo:
1. To maximize the probability of rapid contact with a female’s pheromone plume, the trajectories of male foraging flights might be expected to be directed with respect to wind flow and also to be energetically efficient. 2. Flights directed either upwind, downwind, or crosswind have been proposed as optimal strategies for rapid and/or energetically efficient plume contact. Other possible strategies are random and Lévy walks, which have trajectories and turn frequencies that are not dictated by the direction of wind flow. 3. The planar flight paths of males of the day-active moth Virbia lamae were recorded during the customary time of its sexual activity. 4. We found no directional preference in these foraging flights with respect to the direction of contemporaneous wind flow, but, because crosswind encompasses twice the possible orientations of either upwind or downwind, a random orientation is in effect a de facto crosswind strategy. 5. A crosswind preference should be favoured when the plume extends farther downwind than crosswind, and this strategy is realized by V. lamae males by a random orientation of their trajectories with respect to current wind direction
Resumo:
The Brazilian poplar moth is the most important pest of poplar plantations in Brazil. This research evaluated the effect of Beauveria bassiana Bals. (Vuill.) on the mortality and development of Condylorrhiza vestigialis Guen. (Lepidoptera: Crambidae). The aim was to develop alternative methods for management of this pest. The pathogens were sprayed on poplar leaves and .consequently, the pathogens reached the caterpillars. Bacillus thuringiensis var. kurstaki Berliner was sprayed as the standard treatment. The spray for the control was distilled water. Both pathogens B. bassiana and B. thuringiensis affected insect development with increase mortality at each stage of the insect cycle, reaching a satisfactory control level. Microbial control of Brazilian poplar moth with B. bassiana is promising. Tests with other strains and species of pathogens, mainly under field conditions, were also encouraging. This is the first report about the action of B. bassiana against C. vestigialis.
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mallodeta Butler and Erruca Walker, revalidated, are redescribed and revised. Mallodeta henceforth includes only its type-species, Glaucopis (Lycorea) clavata Walker, and Erruca is resurrected with seven species: E. deyrolii Walker (type-species), E. consors (Walker), new combination, E. erythrarchos (Walker), new combination, E. cardinalis (Hampson), new combination, E. hanga (Herrich-Schaffer), new combination, E. cruenta (Perty), new combination and E. sanguipuncta (Druce), new combination. Six new synonyms are established, four specific and two generic (junior synonyms in parentheses): Zygaena capistrata Fabricius (=Mallodeta cubana Gaede), Glaucopis (Lycorea) clavata Walker (=M. simplex Rothschild), Erruca deyrolii Walker (=Laemocharis aecyra Herrich-Schaffer and Glaucopis (Hyda) sortita Walker), and Erruca Walker (=Aristodaema Wallengren and Rezia Kirby). Lectotypes are designated to the following species: Erruca deyrolii Walker, Laemocharis deyrollei Herrich-Schaffer, Laemocharis hanga Herrich-Schaffer, Laemocharis aecyra Herrich-Schaffer, Laemocharis norma Herrich-Schaffer, Cosmosoma cardinalis Hampson and Mallodeta sanguipuncta Druce. Illustrations of adults and male and female genitalia of Mallodeta and Erruca are provided, as well as a key to the species of the latter.
On the inheritance and mechanism of baculovirus resistance of the codling moth, Cydia pomonella (L.)
Resumo:
Das Cydia pomonella Granulovirus (CpGV, Baculoviridae) wird seit Ende der 1980er Jahre als hoch-selektives und effizientes biologisches Bekämpfungsmittel zur Kontrolle des Apfelwicklers im Obstanbau eingesetzt. Seit 2004 wurden in Europa verschiedene Apfelwicklerpopulationen beobachtet die resistent gegenüber dem hauptsächlich angewendeten Isolat CpGV-M aufweisen. Die vorliegende Arbeit befasst sich mit der Untersuchung der Vererbung und des Mechanismus der CpGV Resistenz. Einzelpaarkreuzungen zwischen einem empfindlichen Laborstamm (CpS) und einem homogen resistenten Stamm (CpRR1) zeigten, dass die Resistenz durch ein einziges dominantes Gen, das auf dem Z-Chromosom lokalisiert ist, vererbt wird. Massernkreuzungen zwischen CpS und einer heterogen resistenten Feldpopulation (CpR) deuteten zunächst auf einen unvollständig dominanten autosomalen Erbgang hin. Einzelpaarkreuzungen zwischen CpS und CpR bewiesen jedoch, dass die Resistenz in CpR ebenfalls monogen dominant und geschlechtsgebunden auf dem Z-Chromosom vererbt wird. Diese Arbeit diskutiert zudem die Vor- und Nachteile von Einzelpaarkreuzungen gegenüber Massernkreuzungen bei der Untersuchung von Vererbungsmechanismen. Die Wirksamkeit eines neuen CpGV Isolates aus dem Iran (CpGV-I12) gegenüber CpRR1 Larven, wurde in Bioassays getestet. Die Ergebnisse zeigen, dass CpGV-I12 die Resistenz in allen Larvenstadien von CpRR1 brechen kann und fast so gut wirkt wie CpGV-M gegenüber CpS Larven. Daher ist CpGV-I12 für die Kontrolle des Apfelwicklers in Anlagen wo die Resistenz aufgetreten ist geeignet. Um den der CpGV Resistenz zugrunde liegenden Mechanismus zu untersuchen, wurden vier verschiedene Experimente durchgeführt: 1) die peritrophische Membran degradiert indem ein optischer Aufheller dem virus-enthaltenden Futtermedium beigefügt wurde. Das Entfernen dieser mechanischen Schutzbarriere, die den Mitteldarm auskleidet, führte allerdings nicht zu einer Reduzierung der Resistenz in CpR Larven. Demnach ist die peritrophische Membran nicht am Resistenzmechanismus beteiligt. 2) Die Injektion von Budded Virus in das Hämocoel führte nicht zur Brechung der Resistenz. Folglich die die Resistenz nicht auf den Mitteldarm beschränkt, sondern auch in der Sekundärinfektion wirksam. 3) Die Replikation von CpGV in verschiedenen Geweben (Mitteldarm, Hämolymphe und Fettkörper) von CpS und CpRR1 wurde mittels quantitativer PCR verfolgt. In CpS Larven konnte in allen drei Gewebetypen sowohl nach oraler als auch nach intra-hämocoelarer Infektion eine Zunahme der CpGV Genome in Abhängigkeit der Zeit festgestellt werden. Dagegen konnte in den Geweben aus CpRR1 nach oraler sowie intra-hämocoelarer Infektion keine Virusreplikation detektiert werden. Dies deutet darauf hin, dass die CpGV Resistenz in allen Zelltypen präsent ist. 4) Um zu untersuchen ob ein humoraler Faktor in der Hämolymphe ursächlich an der Resistenz beteiligt ist, wurde Hämolymphe aus CpRR1 Larven in CpS Larven injiziert und diese anschließend oral mit CpGV infiziert. Es konnte jedoch keine Immunreaktion beobachtet und kein Faktor in der Hämolymphe identifiziert werden, der Resistenz induzieren könnte. Auf Grundlage dieser Ergebnisse kann festgestellt werden, dass in resistenten Apfelwicklerlarven die virale Replikation in allen Zelltypen verhindert wird, was auf eine Virus-Zell Inkompatibilität hinweist. Da in CpRR1 keine DNA Replikation beobachtet wurde, wird die CpGV Resistenz wahrscheinlich durch eine frühe Unterbindung der Virusreplikation verursacht.Das früh exprimierte Gen pe38 codiert für ein Protein, das wahrscheinlich für die Resistenzbrechung durch CpGV-I12 verantwortlich ist. Interaktionen zwischen dem Protein PE38 und Proteinen in CpRR1 wurden mit Hilfe des Yeast Two-Hybrid (Y2H) Systems untersucht. Die detektierten Interaktionen sind noch nicht durch andere Methoden bestätigt, jedoch wurden zwei mögliche Gene auf dem Z-Chromosom und eines auf Chromosom 15 gefunden, wie möglicherweise an der CpGV Resistenz beteiligt sind.
Resumo:
During the last twenty years, Cydia pomonolla granulovirus (CpGV, Baculoviridae) has become the most important biological control agent for the codling moth (CM) in organic and integrated apple production. All registered products in Europe are based on the isolate CpGV-M, which was discovered 1964 in Mexico. A serious threat to future application of CpGV is the occurrence of CM field populations resistant to CpGV. Since 2003, populations with up to 10,000-fold reduced susceptibility were reported from orchards in Germany, France, Italy, Switzerland, Austria and the Netherlands. A putative alternative to CpGV-M are novel CpGV isolates which are able to overcome CM resistance. This thesis focuses on the identification and characterisation of resistance overcoming CpGV isolates and the analysis of their molecular difference to CpGV-M.rnSixteen CpGV isolates were tested against CM lab strains in bioassays. Hereby, five isolates were identified which were able to completely overcome resistance. The genomes of these isolates were compared to CpGV-M by restriction fragment length polymorphism (RFLP) analysis. To identify the molecular factor responsible for improved virulence of some CpGV isolates, major genomic differences were sequenced and analysed. A 0.7 kb insertion was found in CpGV-I01, -I12 and -E2, but not in other resistance overcoming isolates. Analysis of the insertions sequence revealed that it might be due to a transposition event, but not involved in overcoming resistance. rnFor unequivocal identification of CpGV isolates, a new method based on molecular analysis was established. Partial sequencing of the conserved polyhedrin/granulin (polh/gran), late expression factor-8 (lef-8) and late expression factor-9 (lef-9) genes revealed single nucleotide polymorphisms (SNPs). SNP analysis correlated with the grouping obtained by RFLP analysis. A phylogenetic classification due to different genome types A-E is proposed. Phylogenetic analysis suggested that CpGV-M was the phylogenetically youngest of the tested CpGV isolates.rnWhole genome sequencing of two resistance overcoming isolates CpGV-I12 (type D genome) and -S (type E genome) and CpGV-M (type A genome) was performed. Comparison of the three genomes revealed a high sequence identity. Several insertions and deletions ranging from 1-700 nucleotides (nt) were found. Comparison on open reading frame (ORF) level revealed that CpGV-I12 and -S shared only one protein alteration when compared to CpGV-M: a stretch of 24 nt present in ORF cp24 was not found in any of the resistance overcoming isolates. Cp24 codes for the early gene pe38. Combined with the results of phylogenetic analysis, it is proposed that these 24 nt are a recent insertion into the CpGV-M genome. The role of pe38 in overcoming resistance was investigated by knocking out pe38 of a CpGV-M based bacmid and swapping of CpGV-I12 pe38 of into the k.o. bacmid. When pe38 of CpGV-I12 was inserted into the k.o. bacmid, the infectivity could not be rescued, suggesting that the genomic portion of pe38 might play a role in its function.rnIt can be concluded that the recently observed CpGV resistance in CM is only related to type A genomes. RFLP and SNP analysis provide tools for identifying and characterising different CpGV isolates reliably, a pre-condition for a future registration of CpGV products based on novel CpGV isolates.rnrnrn
Resumo:
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores. © 2011 Springer-Verlag.
Resumo:
In Utetheisa ornatrix (Lepidoptera, Arctiidae), the female mates preferentially with larger males. Having a larger father results in the eggs being more richly endowed with defensive pyrrolizidine alkaloid (which the female receives from the male with the sperm package, in quantity proportional to the male's body mass, and passes on to the eggs); having a larger father also results in the sons and daughters themselves being larger (body mass is heritable in Utetheisa). We provide evidence herein that these consequences enhance the fitness of the offspring. Eggs sired by larger males are less vulnerable to predation (presumably because of their higher alkaloid content), whereas sons and daughters, by virtue of being larger, are, respectively, more successful in courtship and more fecund. The female Utetheisa, therefore, by being choosy, reaps both direct phenotypic and indirect genetic benefits.