970 resultados para Di-acceptor cyclopropane
Resumo:
Abstract is not available.
Resumo:
Spectroscopic and electrochemical redox properties of a series of fluorinated porphyrins bearing donor-acceptor groups and their Zn(II) and Cu(II) derivatives are presented. The magnitude of the ring reduction potentials and charge transfer properties derived from spectral data depend on the nature and position of the substituent(s), (nitro/dimethylamino) and the central metal ions.
Resumo:
A survey of the literature on lanthanide coordination compounds reveals that ligands involving ether oxygens as donor atoms have received very little attention [ 11. Only recently have the complexes of lanthanides with cyclic polyethers been characterized [l-3]. We report in this communication that interaction of rareearth perchlorates with two new ligands namely N,N,N’,N’-tetramethyl-u-carboxamido-Oanisamide (TMCA) and N,N’-di-t-butyl-crcarboxamido- 0-anisamide (DTBCA). The two ligands are potentially tridentate possessing two amide moieties and an ether linkage in between. The isolated complexes have been characterized by analysis, electrolytic conductance, infrared and electronic spectra. The ‘H and “C NMR spectra for the diamagnetic La3+ and Y3+ complexes are also discussed.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt -helical conformations stabilized by 11 successive 5 1 hydrogen bonds. In addition, a single 4 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (, ) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle NCC() and the observed backbone , values. For > 106° , helices are observed, while fully extended structures are characterized by < 106° . The mean values for extended and folded conformations for the Dpg residue are 103.6° ± 1.7° and 109.9° ± 2.6° , respectively.
Resumo:
In a series of polymers containing alternately placed electron-rich dialkoxyilaphthalene (DAN) donors and electron-deficient pyromellitic diimide (PDI) acceptors linked by hexa(oxyethylene) (OE-6) segments, the ability to form a folded D-A stack was intentionally disrupted by random inclusion of varying amounts of a comonomer that is devoid of DAN donor units. NMR spectroscopic studies of folding in these copolymers, induced by NH4SCN that coordinates with the OE-6 segments and facilitates the charge-transfer (C-T) induced D-A stacking, clearly reveals the presence of PDI units that are isolated and those that are located at the ends of (D-A),, stacks. Similar conclusions regarding the presence of stacked and unstacked regions along the polymer chain were also inferred from UV-vis spectroscopic studies that probe the evolution of charge-transfer band. One fascinating aspect of these copolymers wits their ability to undergo it two-step folding: first, short (D-A),, stacks are formed by the interaction of the NH4+ ion with some specific regions of the polymer chain, and subsequently these Stacks are further stacked via a two-point interaction with it suitably designed external folding agent that carries a DAN unit and all ammonium group. In the second step, the interaction first occurs by the coordination of the ammonium group of the folding agent with the OE-6 segment, which in turn facilitates the C-T interaction of the DAN unit with the adjacent uncomplexed PDI units along the polymer chain, leading to an increase ill the slacking. Variations of several spectral features, during both UV-vis and NMR spectroscopic titrations, clearly reveal this novel two-step folding process.
Resumo:
A nanoscale-sized cage with a trigonal prismatic shape is prepared by coordination-driven self-assembly of a predesigned organometallic Pt-3 acceptor with an organic clip-type ligand. This trigonal prism is fluorescent and undergoes efficient fluorescence quenching by nitroaromatics, which are the chemical signatures of many explosives.
Resumo:
Half sandwich complexes of the type [CpM(CO)(n)X] {X=Cl, Br, I; If, M=Fe, Ru; n=2 and if M=Mo; n=3} and [CpNiPPh3X] {X=Cl, Br, I} have been synthesized and their second order molecular nonlinearity (beta) measured at 1064 nm in CHCl3 by the hyper-Rayleigh scattering technique. Iron complexes consistently display larger beta values than ruthenium complexes while nickel complexes have marginally larger beta values than iron complexes. In the presence of an acceptor ligand such as CO or PPh3, the role of the halogen atom is that of a pi donor. The better overlap of Cl orbitals with Fe and Ni metal centres make Cl a better pi donor than Br or I in the respective complexes. Consequently, M-pi interaction is stronger in Fe/Ni-Cl complexes. The value of beta decreases as one goes down the halogen group. For the complexes of 4d metal ions where the metal-ligand distance is larger, the influence of pi orbital overlap appears to be less important, resulting in moderate changes in beta as a function of halogen substitution. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ni(II)complexes(1-5)ofdi2pyridylketoneN(4)-phenylthiosemicarbazone (HL) have been synthesized and spectrochemically characterized. Elemental analyses revealed a NiL2 center dot 2H(2)O stoichiometry for compound 1. However, the single crystals isolated revealed a composition NiL, - 0.5(H,0)0.5(DMF). The compound crystallizes into a monoclinic lattice with the space group P-21/n. Complexes 2. 3 and 4 are observed to show a 1:1:1 ratio of metal: thioseicarbazone:gegenion, with the general formula NiLX center dot yH(2)O [X = NCS. Y = 2 for 2; X = Cl, Y = 3 for 3 and X = N-3, y = 4.5 for 4]. Compound 5 is a dimer with a metal:thiosemicarbazone:gegenion ratio of 2:2: 1. with the formula [Ni,L,(SO4)1 - 4H(2)O (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ni(II) complexes (1-5) of di-2-pyridyl ketone N(4)-phenylthiosemicarbazone (HL) have been synthesized and spectrochemically characterized. Elemental analyses revealed a NiL2 center dot 2H(2)O stoichiometry for compound 1. However, the single crystals isolated revealed a composition NiL, - 0.5(H,0)0.5(DMF). The compound crystallizes into a monoclinic lattice with the space group P-21/n. Complexes 2. 3 and 4 are observed to show a 1:1:1 ratio of metal: thioseicarbazone:gegenion, with the general formula NiLX center dot yH(2)O [X = NCS. Y = 2 for 2; X = Cl, Y = 3 for 3 and X = N-3, y = 4.5 for 4]. Compound 5 is a dimer with a metal:thiosemicarbazone:gegenion ratio of 2:2: 1. with the formula [Ni,L,(SO4)1 - 4H(2)O (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethy1-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by H-1 and C-13 NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess lowexcitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfercharacter that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules, Our theoretical values agree well with experimental results.
Resumo:
Two crystals structures of a nonapeptide (anhydrous and hydrated) containing the amino acid residue alpha, alpha-di-n-butylglycyl, reveal a mixed 3(10)/alpha-helical conformation. Residues 1-7 adopt phi, psi values in the helical region, with Val(8) being appreciably distorted. The Dbg residue has phi, psi values of -40, -37 degrees and -46, -40 degrees in two crystals with the two butyl side chains mostly extended in each. Peptide molecules in the crystals pack into helical columns. The crystal parameters are C50H91N9O12, space group P2(1), with a = 9.789(1) Angstrom, b = 20.240(2) Angstrom, c = 15.998(3) Angstrom, beta = 103.27(1); Z = 2, R = 10.3% for 1945 data observed >3 sigma(F) and C50H91N9O12. 3H(2)O, space group P2(1), with a = 9.747(3) Angstrom, b = 21.002(8) Angstrom, c = 15.885(6) Angstrom, beta = 102.22(3)degrees, Z = 2, R = 13.6% for 2535 data observed >3 sigma(F). The observation of a helical conformation at Dbg suggests that the higher homologs in the alpha, alpha-dialkylated glycine series also have a tendency to stabilize peptide helices. (C) Munksgaard 1996.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I' beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 -> 1 hydrogen bonds. In addition, a single 4 -> 1 hydrogen bond is also observed at the N-terminus. All live Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C-alpha-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean r values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The Charge-transfer equilibria of a number of substituted pyridines with iodine have been investigated. Solvent effects on the charge-transfer equilibrium of the pyridineiodine system have been examined. Hydrogen bonding data of substituted pyridines with phenol have been reported.