84 resultados para Dexterity
Resumo:
In the past, the accuracy of facial approximations has been assessed by resemblance ratings (i.e., the comparison of a facial approximation directly to a target individual) and recognition tests (e.g., the comparison of a facial approximation to a photo array of faces including foils and a target individual). Recently, several research studies have indicated that recognition tests hold major strengths in contrast to resemblance ratings. However, resemblance ratings remain popularly employed and/or are given weighting when judging facial approximations, thus indicating that no consensus has been reached. This study aims to further investigate the matter by comparing the results of resemblance ratings and recognition tests for two facial approximations which clearly differed in their morphological appearance. One facial approximation was constructed by an experienced practitioner privy to the appearance of the target individual (practitioner had direct access to an antemortem frontal photograph during face construction), while the other facial approximation was constructed by a novice under blind conditions. Both facial approximations, whilst clearly morphologically different, were given similar resemblance scores even though recognition test results produced vastly different results. One facial approximation was correctly recognized almost without exception while the other was not correctly recognized above chance rates. These results suggest that resemblance ratings are insensitive measures of the accuracy of facial approximations and lend further weight to the use of recognition tests in facial approximation assessment. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.
Resumo:
A survey of the existing state-of-the-art of turbine blade manufacture highlights two operations that have not been automated namely that of loading of a turbine blade into an encapsulation die, and that of removing a machined blade from the encapsulation block. The automation of blade decapsulation has not been pursued. In order to develop a system to automate the loading of an encapsulation die a prototype mechanical handling robot has been designed together with a computer controlled encapsulation die. The robot has been designed as a mechanical handling robot of cylindrical geometry, suitable for use in a circular work cell. It is the prototype for a production model to be called `The Cybermate'. The prototype robot is mechanically complete but due to unforeseen circumstances the robot control system is not available (the development of the control system did not form a part of this project), hence it has not been possible to fully test and assess the robot mechanical design. Robot loading of the encapsulation die has thus been simulated. The research work with regard to the encapsulation die has focused on the development of computer controlled, hydraulically actuated, location pins. Such pins compensate for the inherent positional inaccuracy of the loading robot and reproduce the dexterity of the human operator. Each pin comprises a miniature hydraulic cylinder, controlled by a standard bidirectional flow control valve. The precision positional control is obtained through pulsing of the valves under software control, with positional feedback from an 8-bit transducer. A test-rig comprising one hydraulic location pin together with an opposing spring loaded pin has demonstrated that such a pin arrangement can be controlled with a repeatability of +/-.00045'. In addition this test-rig has demonstrated that such a pin arrangement can be used to gauge and compensate for the dimensional error of the component held between the pins, by offsetting the pin datum positions to allow for the component error. A gauging repeatability of +/- 0.00015' was demonstrated. This work has led to the design and manufacture of an encapsulation die comprising ten such pins and the associated computer software. All aspects of the control software except blade gauging and positional data storage have been demonstrated. Work is now required to achieve the accuracy of control demonstrated by the single pin test-rig, with each of the ten pins in the encapsulation die. This would allow trials of the complete loading cycle to take place.
Resumo:
Loss of limb results in loss of function and a partial loss of freedom. A powered prosthetic device can partially assist an individual with everyday tasks and therefore return some level of independence. Powered upper limb prostheses are often controlled by the user generating surface electromyographic (SEMG) signals. The goal of this thesis is to develop a virtual environment in which a user can control a virtual hand to safely grasp representations of everyday objects using EMG signals from his/her forearm muscles, and experience visual and vibrotactile feedback relevant to the grasping force in the process. This can then be used to train potential wearers of real EMG controlled prostheses, with or without vibrotactile feedback. To test this system an experiment was designed and executed involving ten subjects, twelve objects, and three feedback conditions. The tested feedback conditions were visual, vibrotactile, and both visual and vibrotactile. In each experimental exercise the subject attempted to grasp a virtual object on the screen using the virtual hand controlled by EMG electrodes placed on his/her forearm. Two metrics were used: score, and time to task completion, where score measured grasp dexterity. It was hypothesized that with the introduction of vibrotactile feedback, dexterity, and therefore score, would improve and time to task completion would decrease. Results showed that time to task completion increased, and score did not improve with vibrotactile feedback. Details on the developed system, the experiment, and the results are presented in this thesis.
Resumo:
The world health organization defines musculoskeletal disorder (MSD) as “a disorder of muscles, tendons, peripheral vascular system not directly resulting from an acute or instantaneous event.1 Work related MSDs are one of the most important occupational hazards.1 Among many other occupations, dentistry is a highly demanding profession that requires good visual acuity, hearing, depth perception, psychomotor skills, manual dexterity, and ability to maintain occupational postures over long periods.
Resumo:
Soft robots are robots made mostly or completely of soft, deformable, or compliant materials. As humanoid robotic technology takes on a wider range of applications, it has become apparent that they could replace humans in dangerous environments. Current attempts to create robotic hands for these environments are very difficult and costly to manufacture. Therefore, a robotic hand made with simplistic architecture and cheap fabrication techniques is needed. The goal of this thesis is to detail the design, fabrication, modeling, and testing of the SUR Hand. The SUR Hand is a soft, underactuated robotic hand designed to be cheaper and easier to manufacture than conventional hands. Yet, it maintains much of their dexterity and precision. This thesis will detail the design process for the soft pneumatic fingers, compliant palm, and flexible wrist. It will also discuss a semi-empirical model for finger design and the creation and validation of grasping models.
Resumo:
This thesis studies mobile robotic manipulators, where one or more robot manipulator arms are integrated with a mobile robotic base. The base could be a wheeled or tracked vehicle, or it might be a multi-limbed locomotor. As robots are increasingly deployed in complex and unstructured environments, the need for mobile manipulation increases. Mobile robotic assistants have the potential to revolutionize human lives in a large variety of settings including home, industrial and outdoor environments.
Mobile Manipulation is the use or study of such mobile robots as they interact with physical objects in their environment. As compared to fixed base manipulators, mobile manipulators can take advantage of the base mechanism’s added degrees of freedom in the task planning and execution process. But their use also poses new problems in the analysis and control of base system stability, and the planning of coordinated base and arm motions. For mobile manipulators to be successfully and efficiently used, a thorough understanding of their kinematics, stability, and capabilities is required. Moreover, because mobile manipulators typically possess a large number of actuators, new and efficient methods to coordinate their large numbers of degrees of freedom are needed to make them practically deployable. This thesis develops new kinematic and stability analyses of mobile manipulation, and new algorithms to efficiently plan their motions.
I first develop detailed and novel descriptions of the kinematics governing the operation of multi- limbed legged robots working in the presence of gravity, and whose limbs may also be simultaneously used for manipulation. The fundamental stance constraint that arises from simple assumptions about friction and the ground contact and feasible motions is derived. Thereafter, a local relationship between joint motions and motions of the robot abdomen and reaching limbs is developed. Baseeon these relationships, one can define and analyze local kinematic qualities including limberness, wrench resistance and local dexterity. While previous researchers have noted the similarity between multi- fingered grasping and quasi-static manipulation, this thesis makes explicit connections between these two problems.
The kinematic expressions form the basis for a local motion planning problem that that determines the joint motions to achieve several simultaneous objectives while maintaining stance stability in the presence of gravity. This problem is translated into a convex quadratic program entitled the balanced priority solution, whose existence and uniqueness properties are developed. This problem is related in spirit to the classical redundancy resoxlution and task-priority approaches. With some simple modifications, this local planning and optimization problem can be extended to handle a large variety of goals and constraints that arise in mobile-manipulation. This local planning problem applies readily to other mobile bases including wheeled and articulated bases. This thesis describes the use of the local planning techniques to generate global plans, as well as for use within a feedback loop. The work in this thesis is motivated in part by many practical tasks involving the Surrogate and RoboSimian robots at NASA/JPL, and a large number of examples involving the two robots, both real and simulated, are provided.
Finally, this thesis provides an analysis of simultaneous force and motion control for multi- limbed legged robots. Starting with a classical linear stiffness relationship, an analysis of this problem for multiple point contacts is described. The local velocity planning problem is extended to include generation of forces, as well as to maintain stability using force-feedback. This thesis also provides a concise, novel definition of static stability, and proves some conditions under which it is satisfied.
Resumo:
We investigate the ways young children’s use of mobile touchscreen interfaces is both understood and shaped by parents through the production of YouTube videos and discussions in associated comment threads. This analysis expands on, and departs from, theories of parental mediation, which have traditionally been framed through a media effects approach in analyzing how parents regulate their children’s use of broadcast media, such as television, within family life. We move beyond the limitations of an effects framing through more culturally and materially oriented theoretical lenses of mediation, considering the role mobile interfaces now play in the lives of infants through analysis of the ways parents intermediate between domestic spaces and networked publics. We propose the concept of intermediation, which builds on insights from critical interface studies as well as cultural industries literature to help account for these expanded aspects of digital parenting. Here, parents are not simply moderating children’s media use within the home, but instead operating as an intermediary in contributing to online representations and discourses of children’s digital culture. This intermediary role of parents engages with ideological tensions in locating notions of “naturalness:” the iPad’s gestural interface or the child’s digital dexterity.