866 resultados para Developmental genetics
Resumo:
The membranous labyrinth of the inner ear establishes a precise geometrical topology so that it may subserve the functions of hearing and balance. How this geometry arises from a simple ectodermal placode is under active investigation. The placode invaginates to form the otic cup, which deepens before pinching off to form the otic vesicle. By the vesicle stage many genes expressed in the developing ear have assumed broad, asymmetrical expression domains. We have been exploring the possibility that these domains may reflect developmental compartments that are instrumental in specifying the location and identity of different parts of the ear. The boundaries between compartments are proposed to be the site of inductive interactions required for this specification. Our work has shown that sensory organs and the endolymphatic duct each arise near the boundaries of broader gene expression domains, lending support to this idea. A further prediction of the model, that the compartment boundaries will also represent lineage-restriction compartments, is supported in part by fate mapping the otic cup. Our data suggest that two lineage-restriction boundaries intersect at the dorsal pole of the otocyst, a convergence that may be critical for the specification of endolymphatic duct outgrowth. We speculate that the patterning information necessary to establish these two orthogonal boundaries may emanate, in part, from the hindbrain. The compartment boundary model of ear development now needs to be tested through a variety of experimental perturbations, such as the removal of boundaries, the generation of ectopic boundaries, and/or changes in compartment identity.
Resumo:
While it is well known that reading is highly heritable, less has been understood about the bases of these genetic influences. In this paper, we review the research that we have been conducting in recent years to examine genetic and environmental influences on the particular reading processes specified in the dual-route cognitive model of reading. We argue that a detailed understanding of the role of genetic factors in reading acquisition requires the delineation and measurement of precise phenotypes, derived from well-articulated models of the reading process. We report evidence for independent genetic influences on the lexical and nonlexical reading processes represented in the dual-route model, based on studies of children with particular subtypes of dyslexia, and on univariate and multivariate genetic modelling of reading performance in the normally reading population.
Resumo:
Objective To determine the long-term health and development of a cohort of children in whom confined placental mosaicism (CPM) was diagnosed at prenatal diagnosis. Methods A retrospective cohort study was performed comparing 36 children in whom CPM had been diagnosed prenatally with 195 controls subjects in whom a normal karyotype had been detected prenatally. Data comprising birth information, health, health service utilisation, growth, development, behaviour, and the family were collected by a maternal questionnaire administered when the subjects were aged between 4 and 11 years. Results CPM cases did not differ from controls across a broad range of health measures and there were no major health problems or birth defects among the CPM group. No increase was detected in the incidence of intrauterine growth retardation (IUGR) among CPM cases; however, postnatal growth was reduced compared with controls (p = 0.047). Development and behaviour in CPM cases was similar to that of controls. Conclusions The prenatal diagnosis of CPM is not associated with an increased risk of birth defects or developmental problems, but may be associated with decreased growth. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.
Resumo:
Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.
Resumo:
Background This study examined the predictors, mediators and moderators of parent stress in families of preschool-aged children with developmental disability. Method One hundred and five mothers of preschool-aged children with developmental disability completed assessment measures addressing the key variables. Results Analyses demonstrated that the difficulty parents experienced in completing specific caregiving tasks, behaviour problems during these caregiving tasks, and level of child disability, respectively, were significant predictors of level of parent stress. In addition, parents’ cognitive appraisal of care-giving responsibilities had a mediating effect on the relationship between the child’s level of disability and parent stress. Mothers’ level of social support had a moderating effect on the relationship between key independent variables and level of parent stress. Conclusions Difficulty of care-giving tasks, difficult child behaviour during care-giving tasks, and level of child disability are the primary factors which contribute to parent stress. Implications of these findings for future research and clinical practice are outlined.
Resumo:
As in other areas of the body, developmental anomalies of the eye arise as a result of the disturbance of events during embryology and in a proportion of cases these anomalies are genetically inherited. Developmental anomalies that occur early in embryonic life may be so severe that the embryo may not survive but others result in the birth of healthy babies but with developmental eye defects of varying severity. The most dramatic developmental defects of the eye include anophthalmos (complete absence of an eye), microphthalmos (a general failure of the eye to develop resulting in a small, undeveloped eye), coloboma (caused by failure of the optic vesicle to invaginate), and aniridia (complete or partial loss of the iris). The present article does not provide an exhaustive review of the topic but considers the major types of developmental anomaly to affect the eye and will discuss how recent progress in genetics has increased our understanding of these disorders. The major genes linked to the developmental anomalies are discussed as well as how defects in these genes might lead to specific problems.
Resumo:
The science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. DNA, once held to be the unchanging template of heredity, now appears subject to a good deal of environmental change; considered to be identical in all cells and tissues of the body, there is growing evidence that somatic mosaicism is the normal human condition; and treated as the sole biological agent of heritability, we now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, these phenomena appear to be particularly prevalent in the human brain, and likely are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period, and in enabling phenotypic plasticity in offspring in particular. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of “minimal shared maternal effects,” in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology
Resumo:
There is growing evidence that the complexity of higher organisms does not correlate with the ‘complexity’ of the genome (the human genome contains fewer protein coding genes than corn, and many genes are preserved across species). Rather, complexity is associated with the complexity of the pathways and processes whereby the cell utilises the deoxyribonucleic acid molecule, and much else, in the process of phenotype formation. These pro- cesses include the activity of the epigenome, noncoding ribonucleic acids, alternative splicing and post-transla- tional modifications. Not accidentally, all of these pro- cesses appear to be of particular importance for the human brain, the most complex organ in nature. Because these processes can be highly environmentally reactive, they are a key to understanding behavioural plasticity and highlight the importance of the developmental process in explaining behavioural outcomes.
Resumo:
This chapter reviews genetic studies that have aimed to identify genes influencing psychological traits in infancy (from birth to age 12 months), and considers how this research informs us about the causes of developmental psychopathology. Specifically, this chapter systematically reviews findings from studies that associated common genetic variants with individual variation in infants’ attention, temperament and behaviour, and attachment disorganisation. DRD4 and 5-HTTLPR genes were the most frequently studied candidate genes. Possibly the most coherent set of results relates to the L-DRD4 genotype, which is significantly associated with infant attention, temperament, and attachment style. Research in infant genetics has been strengthened by a careful focus on uniform age ranges within studies, by several longitudinal studies, and by exploration of gene-environment interactions between genes and maternal characteristics. However there is also considerable inconsistency in results in this field and possible reasons for this are discussed. The chapter outlines the main genetic methods that have been used and what new genetic approaches such as polygenic risk scoring could offer infant genetics. Recent findings suggest that some traits during infancy predict individual differences in developmental psychopathology in childhood. It is argued that infant genetic research has considerable potential for the identification of populations at risk for psychopathology in later life, and this remains an area open for future research.
Resumo:
International audience
Resumo:
Since insect species are poikilothermic organisms, they generally exhibit different growth patterns depending on the temperature at which they develop. This factor is important in forensic entomology, especially for estimating postmortem interval (PMI) when it is based on the developmental time of the insects reared in decomposing bodies. This study aimed to estimate the rates of development, viability, and survival of immatures of Sarcophaga (Liopygia) ruficornis (Fabricius 1794) and Microcerella halli (Engel 1931) (Diptera: Sarcophagidae) reared in different temperatures: 10, 15, 20, 25, 30, and 35 ± 1 °C. Bovine raw ground meat was offered as food for all experimental groups, each consisting of four replicates, in the proportion of 2 g/larva. To measure the evolution of growth, ten specimens of each group were randomly chosen and weighed every 12 h, from initial feeding larva to pupae, and then discarded. Considering the records of weight gain, survival rates, and stability of growth rates, the range of optimum temperature for the development of S. (L.) ruficornis is between 20 and 35 °C, and that of M. halli is between 20 and 25 °C. For both species, the longest times of development were in the lowest temperatures. The survival rate at extreme temperatures (10 and 35 °C) was lower in both species. Biological data such as the ones obtained in this study are of great importance to achieve a more accurate estimate of the PMI.
Resumo:
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.
Resumo:
O presente trabalho versa sobre o diagnóstico e a abordagem ortodôntica das anomalias dentárias, enfatizando os aspectos etiológicos que definem tais irregularidades de desenvolvimento. Parece existir uma inter-relação genética na determinação de algumas dessas anomalias, considerando-se a alta frequência de associações. Um mesmo defeito genético pode originar diferentes manifestações fenotípicas, incluindo agenesias, microdontias, ectopias e atraso no desenvolvimento dentário. As implicações clínicas das anomalias dentárias associadas são muito relevantes, uma vez que o diagnóstico precoce de uma determinada anomalia dentária pode alertar o clínico sobre a possibilidade de desenvolvimento de outras anomalias associadas no mesmo paciente ou em outros membros da família, permitindo a intervenção ortodôntica em época oportuna.