915 resultados para Design verification of VLSI circuits
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosawere tested in silico against the Plasmodium falciparumCa2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.
Resumo:
We have designed and built an experimental device, which we called a "thermoelectric bridge." Its primary purpose is simultaneous measurement of the relative Peltier and Seebeck coefficients. The systematic errors for both coefficients are equal with this device and manipulation is not necessary between the measurement of one coefficient and the other. Thus, this device is especially suitable for verifying their linear relation postulated by Lord Kelvin. Also, simultaneous measurement of thermal conductivity is described in the text. A sample is made up of the couple nickel¿platinum, taking measurements in the range of ¿20¿60°C and establishing the dependence of each coefficient with temperature, with nearly equal random errors ±0.2%, and systematic errors estimated at ¿0.5%. The aforementioned Kelvin relation is verified in this range from these results, proving that the behavioral deviations are ¿0.3% contained in the uncertainty ±0.5% caused by the propagation of errors
Resumo:
Laboratoriomittakaavainen formeri on välttämätön, jotta paperinvalmistusprosessin jäljitteleminen olisi mahdollista. Vaikka erilaisia formereita löytyykin paperiteollisuudesta, tilaa on kuitenkin laboratoriomittakaavaiselle paperinvalmistusmenetelmälle, joka sijoittuisipilottikoneen ja perinteisen laboratorioarkkimuotin välille. Formeri, jolla saadaan aikaiseksi oikean paperinvalmistuksen kaltaiset olosuhteet ja ilmiöt on kehitetty, ja sen toiminta on testattu Nalcon Papermaking Centreof Excellence:ssä Espoossa. Formeri on yhdistetty Nalcon lähestymisjärjetelmäsimulaattoriin ja simulaattorilla aikaansaadut hydro-kemialliset ilmiöt voidaan testata nyt myös arkeista. Laitteessa on perälaatikko ja viiraosa. Perälaatikosta massa virtaa viiralle, joka liikkuu eteenpäin hihnakuljettimen hihnojen päällä. Suihku-viira -suhdetta voidaan muuttaa joko muuttamalla virtausnopeutta tai viiran nopeutta tai säätämällä perälaatikon huuliaukkoa. Formerintoiminnan testaus osoitti, että se toimii teknisesti hyvin ja tulokset ovat toistettavia ja loogisia. Arkeissa kuidut ovat orientoituneet, formaatio ja vetolujuussuhde KS/PS riippuvat voimakkaasti suihku-viira -suhteesta, kuten oikeillakinpaperikoneilla.
Resumo:
ABSTRACT: Massive synaptic pruning following over-growth is a general feature of mammalian brain maturation. Pruning starts near time of birth and is completed by time of sexual maturation. Trigger signals able to induce synaptic pruning could be related to dynamic functions that depend on the timing of action potentials. Spike-timing-dependent synaptic plasticity (STDP) is a change in the synaptic strength based on the ordering of pre- and postsynaptic spikes. The relation between synaptic efficacy and synaptic pruning suggests that the weak synapses may be modified and removed through competitive "learning" rules. This plasticity rule might produce the strengthening of the connections among neurons that belong to cell assemblies characterized by recurrent patterns of firing. Conversely, the connections that are not recurrently activated might decrease in efficiency and eventually be eliminated. The main goal of our study is to determine whether or not, and under which conditions, such cell assemblies may emerge out of a locally connected random network of integrate-and-fire units distributed on a 2D lattice receiving background noise and content-related input organized in both temporal and spatial dimensions. The originality of our study stands on the relatively large size of the network, 10,000 units, the duration of the experiment, 10E6 time units (one time unit corresponding to the duration of a spike), and the application of an original bio-inspired STDP modification rule compatible with hardware implementation. A first batch of experiments was performed to test that the randomly generated connectivity and the STDP-driven pruning did not show any spurious bias in absence of stimulation. Among other things, a scale factor was approximated to compensate for the network size on the ac¬tivity. Networks were then stimulated with the spatiotemporal patterns. The analysis of the connections remaining at the end of the simulations, as well as the analysis of the time series resulting from the interconnected units activity, suggest that feed-forward circuits emerge from the initially randomly connected networks by pruning. RESUME: L'élagage massif des synapses après une croissance excessive est une phase normale de la ma¬turation du cerveau des mammifères. L'élagage commence peu avant la naissance et est complété avant l'âge de la maturité sexuelle. Les facteurs déclenchants capables d'induire l'élagage des synapses pourraient être liés à des processus dynamiques qui dépendent de la temporalité rela¬tive des potentiels d'actions. La plasticité synaptique à modulation temporelle relative (STDP) correspond à un changement de la force synaptique basé sur l'ordre des décharges pré- et post- synaptiques. La relation entre l'efficacité synaptique et l'élagage des synapses suggère que les synapses les plus faibles pourraient être modifiées et retirées au moyen d'une règle "d'appren¬tissage" faisant intervenir une compétition. Cette règle de plasticité pourrait produire le ren¬forcement des connexions parmi les neurones qui appartiennent à une assemblée de cellules caractérisée par des motifs de décharge récurrents. A l'inverse, les connexions qui ne sont pas activées de façon récurrente pourraient voir leur efficacité diminuée et être finalement éliminées. Le but principal de notre travail est de déterminer s'il serait possible, et dans quelles conditions, que de telles assemblées de cellules émergent d'un réseau d'unités integrate-and¬-fire connectées aléatoirement et distribuées à la surface d'une grille bidimensionnelle recevant à la fois du bruit et des entrées organisées dans les dimensions temporelle et spatiale. L'originalité de notre étude tient dans la taille relativement grande du réseau, 10'000 unités, dans la durée des simulations, 1 million d'unités de temps (une unité de temps correspondant à une milliseconde), et dans l'utilisation d'une règle STDP originale compatible avec une implémentation matérielle. Une première série d'expériences a été effectuée pour tester que la connectivité produite aléatoirement et que l'élagage dirigé par STDP ne produisaient pas de biais en absence de stimu¬lation extérieure. Entre autres choses, un facteur d'échelle a pu être approximé pour compenser l'effet de la variation de la taille du réseau sur son activité. Les réseaux ont ensuite été stimulés avec des motifs spatiotemporels. L'analyse des connexions se maintenant à la fin des simulations, ainsi que l'analyse des séries temporelles résultantes de l'activité des neurones, suggèrent que des circuits feed-forward émergent par l'élagage des réseaux initialement connectés au hasard.
Resumo:
The layout design process of the packaging laboratory at Lappeenranta University of Technology is documented in this thesis. Layout planning methods are discussed in general. The systematic layout planning procedure is presented in more detail as it is utilised in the case of layout planning of the packaging laboratory. General demands for research laboratory are discussed both from the machine and product perspectives. The possibilities for commercial food processing in the laboratory are discussed from the point of view of foodstuff processing regulations and hygiene demands. The layout planning process is documented and different layout possibilities are presented. Different layout drafts are evaluated and one layout draft is developed to be the final layout of the packaging laboratory. Guideline for technical planning and implementation based on the final layout is given
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.
Resumo:
The oxidation potential of pulsed corona discharge concerning aqueous impurities is limited in respect to certain refractory compounds. This may be enhanced in combination of the discharge with catalysis/photocatalysis as developed in homogeneous gas-phase reactions. The objective of the work consists of testing the hypothesis of oxidation potential enhancement in combination of the discharge with TiO2 photocatalysis applied to aqueous solutions of refractory oxalate. Meglumine acridone acetate was included for meeting the practical needs. The experimental research was undertaken into oxidation of aqueous solutions under conditions of various target pollutant concentrations, pH and the pulse repetition rate with plain electrodes and the electrodes with TiO2 attached to their surface. The results showed no positive influence of the photocatalyst, the pollutants were oxidized with the rate identical within the accuracy of measurements. The possible explanation for the observed inefficiency may include low UV irradiance, screening effect of water and generally low oxidation rate in photocatalytic reactions. Further studies might include combination of electric discharge with ozone decomposition/radical formation catalysts.
Resumo:
A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.
Resumo:
Systems which employ underwater acoustic energy for observation or communication are called sonar systems. The active and passive sonars are the two types of systems used for the detection and localisation of targets in underwater. Active sonar involves the transmission of an acoustic signal which, when reflected from a target, provides the sonar receiver with a basis for the detection and estimation. Passive sonar bases its detection and estimation on sounds which emanate from the target itself--Machinery noise, flow noise, transmission from its own active sonar etc.Electroacoustic transducers are used in sonar systems for the transmission and detection of acoustic energy. The transducer which is used for the transmission of acoustic energy is called projector and the one used for reception is called hydrophone. Since a single transducer is not sufficient enough for long range and directional transmission, a properly distributed array of transducers are to be used [9-11].The need and requirement for spatial processing to generate the most favourable directivity patterns for transducer systems used in underwater applications have already been analysed by several investigators [12-21].The desired directivity pattern can be either generated by the use of suitable focussing techniques or by an array of non-directional sensor elements, whose arrangements, spacing and the mode of excitation provide the required radiation pattern or by the combination of these.While computing that the directivity pattern, it is assumed strength of the elements are unaffected by the the source acoustic pressure at each source. However, in closely packed a r r a y s , the acoustic interaction effects experienced among the elements will modify the behaviour of individual elements and in turn will reduce the acoust ic source leve 1 wi t h respect to the maximum t heoret i cal va 1ue a s well as degrade the beam pa t tern. Th i s ef fect shou 1d be reduced in systems that are intended to generate high acoustic power output and unperturbed beam patterns [2,22-31].The work herein presented includes an approach for designing efficient and well behaved underwater transd~cer arrays, taking into account the acoustic interaction effect experienced among the closely packed multielement arrays.Architectural modifications reducing the interaction effect different radiating apertures.