907 resultados para Depression Severity Transition Probability Matrix
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
In dieser Arbeit wurde der instabile, Neutronenarme Kern 108Sn mit Hilfe der Coulomb-Anregung bei intermediaeren Energien in inverser Kinematik studiert. Diese Methode wurde bisher zur Untersuchung der ersten angeregten 2+ Zustaende und deren E2 Zerfallsraten in Kernen mit Kernladungszahl Z< 30 angewendet. 108Sn ist somit der Kern mit der groeßten Kernladungszahl, bei dem diese Studien bisher stattfanden. Das Ziel dieses Experiments war die Messung der unbekannten reduzierten Uebergangswahrscheinlichkeit B(E2,0+ -> 2+). Der B(E2)-Wert von 0.230(57) e2b2 wurde relativ zu dem bekannten Wert des Isotops 112Sn bestimmt. Das Experiment wurde an der GSI Darmstadt mit Hilfe des RISING Detektors und des Fragmentseperators (FRS) durchgefuehrt. Sekundaere Strahlen (108Sn, 112Sn) mit einer Energie von ca. 150 MeV pro Nukleon wurden auf ein 386 mg/cm2 dickes 197Au Target geschossen. Die Projektilfragmente wurden mit Hilfe des Fragmentseparators selektiert und identifiziert. Zur Selektion des Reaktionskanals und zur Bestimmung des Winkels der gestreuten Fragmente wurde das Teilchenteleskop CATE, das sich hinter dem Target befand, verwendet. Gammastrahlung, die in Koinzidenz mit den Projektilrestkernen emittiert wurde, wurde in den Germanium-Cluster Detektoren des RISING Detektors nachgewiesen. Der gemessene B(E2,0+ -> 2+)-Wert von 108Sn ist in Uebereinstimmung mit neueren Schalenmodellrechnungen, die auf realistischen effektiven Wechselwirkungen basieren und im Rahmen eines verallgemeinerten Seniorit¨ats-Schemas erklaert werden.
Resumo:
The thesis presents a probabilistic approach to the theory of semigroups of operators, with particular attention to the Markov and Feller semigroups. The first goal of this work is the proof of the fundamental Feynman-Kac formula, which gives the solution of certain parabolic Cauchy problems, in terms of the expected value of the initial condition computed at the associated stochastic diffusion processes. The second target is the characterization of the principal eigenvalue of the generator of a semigroup with Markov transition probability function and of second order elliptic operators with real coefficients not necessarily self-adjoint. The thesis is divided into three chapters. In the first chapter we study the Brownian motion and some of its main properties, the stochastic processes, the stochastic integral and the Itô formula in order to finally arrive, in the last section, at the proof of the Feynman-Kac formula. The second chapter is devoted to the probabilistic approach to the semigroups theory and it is here that we introduce Markov and Feller semigroups. Special emphasis is given to the Feller semigroup associated with the Brownian motion. The third and last chapter is divided into two sections. In the first one we present the abstract characterization of the principal eigenvalue of the infinitesimal generator of a semigroup of operators acting on continuous functions over a compact metric space. In the second section this approach is used to study the principal eigenvalue of elliptic partial differential operators with real coefficients. At the end, in the appendix, we gather some of the technical results used in the thesis in more details. Appendix A is devoted to the Sion minimax theorem, while in appendix B we prove the Chernoff product formula for not necessarily self-adjoint operators.
Resumo:
Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.
Resumo:
We investigated whether a pure perceptual stream is sufficient for probabilistic sequence learning to occur within a single session or whether correlated streams are necessary, whether learning is affected by the transition probability between sequence elements, and how the sequence length influences learning. In each of three experiments, we used six horizontally arranged stimulus displays which consisted of randomly ordered bigrams xo and ox. The probability of the next possible target location out of two was either .50/.50 or .75/.25 and was marked by an underline. In Experiment 1, a left vs. right key response was required for the x of a marked bigram in the pure perceptual learning condition and a response key press corresponding to the marked bigram location (out of 6) was required in the correlated streams condition (i.e., the ring, middle, or index finger of the left and right hand, respectively). The same probabilistic 3-element sequence was used in both conditions. Learning occurred only in the correlated streams condition. In Experiment 2, we investigated whether sequence length affected learning correlated sequences by contrasting the 3-elements sequence with a 6-elements sequence. Significant sequence learning occurred in all conditions. In Experiment 3, we removed a potential confound, that is, the sequence of hand changes. Under these conditions, learning occurred for the 3-element sequence only and transition probability did not affect the amount of learning. Together, these results indicate that correlated streams are necessary for probabilistic sequence learning within a single session and that sequence length can reduce the chances for learning to occur.
Resumo:
INTRODUCTION Despite important advances in psychological and pharmacological treatments of persistent depressive disorders in the past decades, their responses remain typically slow and poor, and differential responses among different modalities of treatments or their combinations are not well understood. Cognitive-Behavioural Analysis System of Psychotherapy (CBASP) is the only psychotherapy that has been specifically designed for chronic depression and has been examined in an increasing number of trials against medications, alone or in combination. When several treatment alternatives are available for a certain condition, network meta-analysis (NMA) provides a powerful tool to examine their relative efficacy by combining all direct and indirect comparisons. Individual participant data (IPD) meta-analysis enables exploration of impacts of individual characteristics that lead to a differentiated approach matching treatments to specific subgroups of patients. METHODS AND ANALYSIS We will search for all randomised controlled trials that compared CBASP, pharmacotherapy or their combination, in the treatment of patients with persistent depressive disorder, in Cochrane CENTRAL, PUBMED, SCOPUS and PsycINFO, supplemented by personal contacts. Individual participant data will be sought from the principal investigators of all the identified trials. Our primary outcomes are depression severity as measured on a continuous observer-rated scale for depression, and dropouts for any reason as a proxy measure of overall treatment acceptability. We will conduct a one-step IPD-NMA to compare CBASP, medications and their combinations, and also carry out a meta-regression to identify their prognostic factors and effect moderators. The model will be fitted in OpenBUGS, using vague priors for all location parameters. For the heterogeneity we will use a half-normal prior on the SD. ETHICS AND DISSEMINATION This study requires no ethical approval. We will publish the findings in a peer-reviewed journal. The study results will contribute to more finely differentiated therapeutics for patients suffering from this chronically disabling disorder. TRIAL REGISTRATION NUMBER CRD42016035886.
Resumo:
In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^
Resumo:
The electronic excitations of naphthalene and a family of bridged naphthalene dimers are calculated and analyzed by using the Collective Electronic Oscillator method combined with the oblique Lanczos algorithm. All experimentally observed trends in absorption profiles and radiative lifetimes are reproduced. Each electronic excitation is linked to the corresponding real-space transition density matrix, which represents the motions of electrons and holes created in the molecule by photon absorption. Two-dimensional plots of these matrices help visualize the degree of exciton localization and explain the dependence of the electronic interaction between chromophores on their separation.
Resumo:
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier–Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager–Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherWe adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
Resumo:
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07