998 resultados para Deposit type
Resumo:
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12-1.01 ppb (0.06-0.59) 230Th, 0.51-1.98 ppm (0.43-1.40) 232Th, 0.13-0.80 ppb (0.09-0.49) 234U, and 1.95-13.47 ppm (1.66-8.24) 238U. Both nodules have average growth rates of ~110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The 234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected 234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.
Resumo:
In May and June 1936 Dr. C. S. Piggot of the Geophysical Laboratory, Carnegie Institution of Washington, took a series of 11 deep-sea cores in the North Atlantic Ocean between the Newfoundland banks and the banks off the Irish coast. These cores were taken from the Western Union Telegraph Co.'s cable ship Lord Kelvin with the explosive type of sounding device which Dr. Piggot designed. All but two of these cores (Nos. 8 and 11) are more than 2.43 meters (8 feet) long, and all contain ample material for study. Of the two short cores, No. 8 was taken from the top of the Faraday Hills, as that part of the mid-Atlantic ridge is known, where the material is closely packed and more sandy and consequently more resistant; No. 11 came from a locality where the apparatus apparently landed on volcanic rock that may be part of a submarine lava flow.
Resumo:
The cores described in this report were taken during the CHINOOK Expedition in July to August 1956 by the Scripps Institution of Oceanography from the R/V Spencer F. Baird. A total of 20 cores and dredges were recovered and are available at Scripps for sampling and study.
Resumo:
Three nodules from a core taken north of Puerto Rico are composed chiefly of an x-ray amorphous, hydrated, iron-manganese oxide, with secondary goethite, and minor detrital silicates incorporated during growth of the nodules. No primary manganese mineral is apparent. The nodules are enriched in iron and depleted in manganese relative to Atlantic Ocean averages. The formation of these nodules appears to have been contemporary with sedimentation and related to volcanic activity.
Resumo:
Thorium and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution Th-230(excess) profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06-0.59 ppb (Th-230), 0.43-1.40 ppm (Th-232), 0.09-0.49 ppb (U-234) and 1.66-8.24 ppm (U-238). The uranium activity ratio in the uppermost samples (1-6 mm) and in two further sections in the nodule at 12.5+/-1.0 mm and 27.3-33.5 mm comes close to the present ocean wa ter value of 1.144+/-0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the Th-230(excess) concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant Th-230(excess) concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11-15 and 28-33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable sb supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.
Resumo:
In 1905, the Percy Sladen Trust Expedition, under the supervision of Stanley Gardiner in H.M.S. 'Sealark' made an extensive cruise in the Indian Ocean. The author received 79 samples from Mr. Gardiner which were thoroughly examined.
Resumo:
The cores described in this report were taken on the FANFARE Expedition in July 1959 by Scripps Institution of Oceanography from the R/V H. M. Smith and the R/V Spencer F. Baird. A total of 49 cores and dredges were recovered and are available at Scripps for sampling and study. The coring sites, all in the eastern tropical central Pacific.
Resumo:
The research cruise SO79 with RV SONNE (April 18 to June 09 1992) aimed to assess the impact of a potential mining activity on the sensitive deep-sea ecosystem of the Peru Basin. Up to now only results of reconnaissance surveys of the extended manganese nodule field discovered in 1978 in the Peru Basin are available. The hydroacoustic, sedimentological, and geochemical studies on data and sample material of SO79 came to the following results: a small-scaled variation in thickness respectively type of surface sediments shown by the sediment echosounder respectively the side-scan-sonar is assumably due to variations in deposition or erosion. The composition of sediments is controlled by climatic cycles of different length which were caused by the variable influence of glaciation of the northern hemisphere. We think that during the quaternary a deep-water circulation reduced in intensity and O2-content may have produced a suboxic diagenetic environment which led to a remobilization and redeposition of Mn forming manganese nodules in the oxic surface sediments. Near the distinct redox boundary at about 10 cm depth the growth conditions for nodules are extremely favourable. Due to the great variability of sediments the impact of deep-sea mining will be highly variable and the disturbance of the seafloor will change the ecosystem considerably.
Resumo:
The cores and dredges described in this report were taken during the VEMA 15 Expedition from October 1958 until July 1959 by the Lamont Geological Observatory, Columbia University from the R/V Vema. A total of 410 cores and dredges were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
Prof. H. H. W. Menard has brought together nearly all that was known of the Pacific geology in the early 1960s. His book contains a particular chapter on manganese nodules giving a stimulating review of the features and processes known to govern their distribution and chemical composition.
Resumo:
Baltic sediments have been studied by Behrens, Munthe, Küppers, Spethmann, Apstein, Sjöstedt, Pratje and the writer. The following types of sediments have been observed: varved and non-varved late-glacial clays, gray and black, post-glacial muds, and sands. The organic content of late-glacial clays ordinarily is less than 1.3 per cent, and of post-glacial muds more than 3 per cent. Sediments containing intermediate quantities are scarce. This can be explained as a result of the changed balance between organic and inorganic sedimentation when the glacial period ended; the abundance of fresh detritus then suddenly ceased and inorganic sedimentation became very much slower than before; consequently, the relative amount of organic detritus increased. As most of the material was not subjected to biological analysis, it has not been possible to distinguish different ages among post-glacial sediments.
Resumo:
Study of cores taken from the north-eastern Mediterranean during cruise 4/72 of the RRV Shackleton, using a Lehigh 4-inch hydroplastic gravity corer and containing layered organic structures encrusted with either manganese or iron minerals.
Resumo:
Captain Wharton, the Hydrographer of the Admiralty sent to the author a series of the deposit-samples collected in the Indian and Antarctic Oceans during the expeditions in 1887 of H.M.S. Flying Fish, H.M.S. Egeria and H.M.S. Investigator. These deposits were submitted to careful microscopical examination and chemical analysis.
Resumo:
On Vermilion Sea Expedition two research vessels among which the R/V Spencer F. Baird conducted a geological and geophysical exploration of the Gulf of California from February to May, 1959. Support was obtained from the Office of Naval Research and the Bureau of Ships of the U. S. Navy and from a grant of the American Petroleum Institute. Study of the canyons was one feature of the first part of the expedition. Submarine canyon studies were directed by Francis P. Shepard, Professor of Submarine Geology, aboard the research vessel Spencer F. Baird. The expedition found that the narrow channel between Angel de la Guarda Island, toward the head of the Gulf, and the peninsula is scoured almost free of sediments by strong currents. On the other side of Angel de la Guarda Island, between it and the mainland, one of the dredge hauls brought up a manganese nodule. It came from a depth of approximately 1500 feet. This is the shallowest water in which the nodules have been found. Studies have been under way some time on the feasibility of mining such nodules from the sea floor. They contain cobalt, nickel, copper and other valuable metals. (also in, Scripps Institution of Oceanography Vermilion Sea Expedition to the Gulf of California, http://library.ucsd.edu/dc/object/bb34484017)