95 resultados para Denudation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite strontium isotopic seawater curve was constructed for the Miocene between 24 and 6 Ma by combining 87Sr/86Sr measurements of planktonic foraminifera from Deep Sea Drilling Project sites 289 and 588. Site 289, with its virtually continuous sedimentary record and high sedimentation rates (26 m/m.y.), was used for constructing the Oligocene to mid-Miocene part of the record, which included the calibration of 63 biostratigraphic datums to the Sr seawater curve using the timescale of Cande and Kent (1992 doi:10.1029/92JB01202). Across the Oligocene/Miocene boundary, a brief plateau occurred in the Sr seawater curve (87Sr/86Sr values averaged 0.70824) which is coincident with a carbon isotopic maximum (CM-O/M) from 24.3 to 22.6 Ma. During the early Miocene, the strontium isotopic curve was marked by a steep rise in 87Sr/86Sr that included a break in slope near 19 Ma. The rate of growth was about 60 ppm/m.y. between 22.5 and 19.0 Ma and increased to over 80 ppm/m.y. between 19.0 and 16 Ma. Beginning at ~16 Ma (between carbon isotopic maxima CM3 and CM4 of Woodruff and Savin (1991 doi:10.1029/91PA02561)), the rate of 87Sr/86Sr growth slowed and 87Sr/86Sr values were near constant from 15 to 13 Ma. After 13 Ma, growth in 87Sr/86Sr resumed and continued until ~9 Ma, when the rate of 87Sr/86Sr growth decreased to zero once again. The entire Miocene seawater curve can be described by a high-order function, and the first derivative (d87Sr/86Sr/dt) of this function reveals two periods of increased slope. The greatest rate of 87Sr/86Sr change occurred during the early Miocene between ~20 and 16 Ma, and a smaller, but distinct, period of increased slope also occurred during the late Miocene between ~12 and 9 Ma. These periods of steepened slope coincide with major phases of uplift and denudation of the Himalayan-Tibetan Plateau region, supporting previous interpretations that the primary control on seawater 87Sr/86Sr during the Miocene was related to the collision of India and Asia. The rapid increase in 87Sr/86Sr values during the early Miocene from 20 to 16 Ma imply high rates of chemical weathering and dissolved riverine fluxes to the oceans. In the absence of another source of CO2, these high rates of chemical weathering should have quickly resulted in a drawdown of atmospheric CO2 and climatic cooling through a reversed greenhouse effect. The paleoclimatic record, however, indicates a warming trend during the early Miocene, culminating in a climatic optimum between 17 and 14.5 Ma. We suggest that the high rates of chemical erosion and warm temperatures during the climatic optimum were caused by an increase in the contribution of volcanic CO2 from the eruption of the Columbia River Flood Basalts (CRFB) between 17 and 15 Ma. The decrease in the rate of CRFB eruptions at 15 Ma and the removal of atmospheric carbon dioxide by increased organic carbon burial in Monterey deposits eventually led to cooling and increased glaciation between ~14.5 and 13 Ma. The CRFB hypothesis helps to explain the significant time lag between the onset of increased rates of organic carbon burial in the Monterey at 17.5 Ma (as marked by increased delta13C values) and the climatic cooling and glaciation during the middle Miocene (as marked by the increase in delta18O values), which did not begin until ~14.5 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A curve describing the variation of the strontium isotopic composition of seawater for the late Neogene (9 to 2 Ma) was constructed from 87Sr/86Sr analyses of marine carbonate in five Deep Sea Drilling Project (DSDP) sites: 502, 519, 588, 590, and 593. The strontium isotopic composition of the oceans increased between 9 and 2 Ma with several changes in slope. From 9 to 5.5 Ma, 87Sr/86Sr values were nearly constant at ~0.708925. Between 5.5 and 4.5 Ma, 87Sr/86Sr ratios increased monotonically at a rate of not, vert, similar 1 * 10**-4 per million years. The steep slope during this interval provides the potential for high resolution strontium isotope stratigraphy across the Miocene/Pliocene boundary. The rate of change of 87Sr/86Sr decreases to near zero again during the interval 4.5-2.5 Ma, and ratios average 0.709025. The relatively rapid increase of 87Sr/86Sr between 5.5 and 4.5 Ma must be related to changes in the flux or average 87Sr/86Sr ratios of the major inputs of Sr to the oceans. Quantitative modelling of these inputs suggests that the increase was most probably caused by an increase in the dissolved riverine flux of strontium to the oceans, an increase in the average 87Sr/86Sr composition of river water, or some combination of these parameters. Modelling of this period as a transient-state requires a pulse-like increase in the input of 87Sr to the oceans between 5.5 and 4.5 Ma. Alternatively, the 5.5-4.5 Ma period can be modelled as a simple transition from one steady-state to another if the oceanic residence time of strontium was eight times less than the currently accepted value of 4 Ma. During the time interval of steep 87Sr/86Sr increase, other geochemical and sedimentologic changes also occur including an increase in sediment accumulation rates, a drop in the calcite compensation depth (CCD), and a decrease in the delta13C of dissolved bicarbonate (i.e., "carbon shift"). The simplest mechanism to explain 87Sr/86Sr variation and these related geochemical changes is to invoke an increase in the dissolved chemical fluxes carried by rivers to the oceans. This, in turn, implies increased chemical denudation rates of the continents and shelves during the late Neogene. The increase in chemical weathering rates is attributed to increased exposure of the continents by eustatic regression, intensified glacial/interglacial cycles, and accelerated rates of global tectonism beginning at 5.5 Ma during the latest Miocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study presented in this PhD memory aim at better define and quantify the present timeerosion processes in glacial and proglacial domain. The Glacier des Bossons, situated in theMont-Blanc massif (Haute-Savoie, France), is a good example of a natural and nonanthropizedsystem which allows us to study this topic. This glacier lies on two mainlithologies (the Mont-Blanc granite and the metamorphic bedrock) and this peculiarity is usedto determine the origin of the glacial sediments. The sediments were sampled at the glaciersurface and at the glacier sole and also in the subglacial streams in order to understand themechanisms of mechanical erosion and particle transportation in glacial domain. The study ofthe granulometric distribution and the origin of the sediments were performed by a lithologicanalysis at macro-scale (naked-eye) and a geochemical analysis at micro-scale (U-Pb datingof zircons). These analyses allowed specifying the characteristics of glacial erosion andtransport. (1) the supraglacial sediments derived from the erosion of the rocky valley sides aremainly coarse and the glacial transport does not mix these clasts with those derived from thesub-glacial erosion, except in the lower tongue; (2) the sub-glacial erosion rates areinhomogeneous, erosion under the temperate glacier (0.4-0.8 mm/yr) is at least sixteen timesmore efficient than the erosion under the cold glacier (0.025-0.05 mm/yr); (3) the sub-glacialsediments contain a silty and sandy fraction, resulting from processes of abrasion andcrushing, which is evacuated by sub-glacial streams. The high-resolution temporal acquisitionof hydro-sedimentary data during the 2010 melt season, between the May 5th and theSeptember 17th, allowed defining the seasonal behavior of the hydrologic and sedimentaryfluxes. The sediment exportation occurs mainly during the melt season therefore, quantify thesediment fluxes in the Bossons stream and measure regularly the topographic evolution of thefluvio-glacial system allows to perform a sedimentary balance of the erosion of glacial andnon-glacial domains. During the year 2010, about 3000 tons of sediments were eroded with430 tons settled on the fluvio-glacial system. By analyzing the evolution of suspendedparticulate matter concentrations in the Bossons stream upstream and downstream the fluvioglacialsystem, the part of glacial erosion and non-glacial denudation in the sedimentarybalance could be proportioned. The erosion during the stormy events of the uncoveredmoraines, confining the fluvio-glacial system of the Bossons stream, furnishes at least 59% ofthe sediments exported by the Bossons stream and glacial erosion (41% of the flux) istherefore less efficient comparatively. The long-term evolution of the glacial systems inperiod of global warming would show a sustained erosion of proglacial environments(mountain sides and moraines) recently exposed and therefore an increasing of the detritalfluxes. The Glacier des Bossons protects the summit of the Mont-Blanc, the differentialerosion between zones under the ice and non-glacial could lead to an increase of thedifference of altitude between valleys and summits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available geological calibration sites used to estimate the rate at which cosmogenic 3He is produced at the Earth’s surface are mostly clustered in medium to high latitudes. Moreover, most of them have exposure histories shorter than tens of thousands of years. This lack of sites prevents a qualitative assessment of available production models used to convert cosmogenic 3He concentrations into exposure ages and/or denudation rates. It thus limits our ability to take into account the atmospheric, geomagnetic and solar modulation conditions that might have affected the production of cosmogenic nuclides in the past for longer exposure histories and in low latitude regions. We present the cosmogenic 3He production rate inferred from a new geological calibration site located in northern Chile. Five samples were collected on the surface of the largest and best-preserved lava flow of the San Pedro volcano (21.934°S-68.510°W- 3390 m a.s.l), which displays pristine crease-structure features. 40Ar/39Ar dating yield a reliable plateau age of 107±12 ka for the eruption of this lava flow. Eight pyroxene aliquots separated from the surface samples yield a weighted average cosmogenic 3He concentration of 99.3±1.2 Mat.g-1 from which a local cosmogenic 3He production rate of 928±101 at.g-1.yr-1 is calculated. The local production rate is then scaled to a sea level high latitude (SLHL) reference position using different combinations of geographic spatialization schemes, atmosphere models and geomagnetic field reconstructions, yielding SLHL production rates between 103±11 and 130±14 at.g-1.yr-1 consistent with the most recent estimates available from the literature. Finally, we use the same scaling frameworks to re-evaluate the mean global-scale cosmogenic 3He production rate in olivine and pyroxene minerals at 120±16 at.g-1.yr-1 from the compilation of previously published calibration datasets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A six-fold increase in the rate of accumulation of Al in north and central Atlantic and Pacific Ocean sediments indicates vastly increased denudation of the continents during the past 15 Ma. The increase is more apparent in hemipelagic than pelagic sites, demonstrating widely distributed local controls. Similarities in the rate of increase in the Atlantic and Pacific show that tectonic elevation is not responsible for the difference in sedimentation rate. Also, similarities in the difference at sites of low and high latitude suggest that glaciation is not the most significant source. A lack of correspondence between sedimentation rates and Vail's sea-level curve similarly rule out that effect. The conclusion drawn here is that worldwide climatic deterioration during the late Tertiary is the explanation for the striking increase in detrital sedimentation in the World ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabinoids, including the endogenous ligand arachidonyl ethanolamide (anandamide), elicit not only neurobehavioral but also cardiovascular effects. Two cannabinoid receptors, CB1 and CB2, have been cloned, and studies with the selective CB1 receptor antagonist SR141716A have implicated peripherally located CB1 receptors in the hypotensive action of cannabinoids. In rat mesenteric arteries, anandamide-induced vasodilation is inhibited by SR141716A, but other potent CB1 receptor agonists, such as HU-210, do not cause vasodilation, which implicates an as-yet-unidentified receptor in this effect. Here we show that “abnormal cannabidiol” (Abn-cbd) is a neurobehaviorally inactive cannabinoid that does not bind to CB1 receptors, yet causes SR141716A-sensitive hypotension and mesenteric vasodilation in wild-type mice and in mice lacking CB1 receptors or both CB1 and CB2 receptors. Hypotension by Abn-cbd is also inhibited by cannabidiol (20 μg/g), which does not influence anandamide- or HU-210-induced hypotension. In the rat mesenteric arterial bed, Abn-cbd-induced vasodilation is unaffected by blockade of endothelial NO synthase, cyclooxygenase, or capsaicin receptors, but it is abolished by endothelial denudation. Mesenteric vasodilation by Abn-cbd, but not by acetylcholine, sodium nitroprusside, or capsaicine, is blocked by SR141716A (1 μM) or by cannabidiol (10 μM). Abn-cbd-induced vasodilation is also blocked in the presence of charybdotoxin (100 nM) plus apamin (100 nM), a combination of K+-channel toxins reported to block the release of an endothelium-derived hyperpolarizing factor (EDHF). These findings suggest that Abn-cbd and cannabidiol are a selective agonist and antagonist, respectively, of an as-yet-unidentified endothelial receptor for anandamide, activation of which elicits NO-independent mesenteric vasodilation, possibly by means of the release of EDHF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fission track analysis was applied to the Precambrian suites of Madagascar in order to identify the lower-temperature cooling histories and their relationships to the Phanerozoic events that affected the island. Apatite ages range from 431 to 68 Ma, and zircon ages range from 452 to 238 Ma. Thermochronologically, the island can be divided into a southern, central, and northern region each with a subdivision on an east-west basis. The southern region is sharply separated from the central region by strongly contrasting apparent apatite ages over the northwest-southeast striking Ranotsara Shear Zone (RSZ). The change in apparent ages over the RSZ is indicative of later reactivation along younger brittle faults. The central region has the oldest ages of the island and has a diffuse contact to the third region northward. Along the entire western margin of the Precambrian basement initial Paleozoic exhumation was followed by heating (burial by sediments) during Jurassic and Cretaceous times. A decrease in ages along the eastern margin from 119 to 68 Ma coincides with the predicted positions of the Marion hot spot after effects of erosion are considered. On the other hand, these ages may represent progressive opening of the margin in a southward direction together with associated denudation of the rift shoulder. The eastern part of the central region has remained very stable since at least Devonian times, undergoing only long-term very slow exhumation at rates of 1–5 m/Myr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the objectives of the Cape Roberts Project is to study the tectonic history of the western Ross Sea region. Timing of the uplift of the Transantarctic Mountains, which are adjacent to the drillsite, will be a component of the tectonic studies (International Steering Committee, 1994; Cale Roberts Science Team, 1998a). The study of the clast samples from the core will be an important means of providing insight into the timing of uplift of the Transantarctic Mountains. Tholeiitic igneous rocks of the Jurassic (180 Ma) Ferrar large igneous province (FLIP) are widespreaded along the Transantarctic Mountains and have the potential to provide distinct indicators of erosion during uplift of the mountains. In the Transantarctic Mountains adjacent to the Cape Roberts drill site the FLIP is represented by lavas and pyroclastic of the Kirkpatrick basalts and by thick Ferrar dolerite sills which intrude the Beacon Supergroup sediments and, occasionally, the granitic basement rocks. In the Prince Albert Mountains, the youngest Kirkpatrick basalt lava is over 150 m thick, and has a very distinct high TiO2 chemical composition which is unique in the FLIP. If such rocks can be identified in the core they may provide precise timing of the initiation of uplift and denudation of the Transantarctic Mountains. Here we report on an examination of 20 Ferrar dolerite clasts. This brief report is intended as a pilot study to the examination of FLIP clasts from older drillcore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ar-40/Ar-39 incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 in depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3-5 wt.%) yield reliable geochronological results. The Ar-40/Ar-39 plateau ages obtained decrease from the top to the bottom of the profile (12.7 +/- 0.1 to 7.6 +/- 0.1 Ma at surface; 7.6 +/- 0.2 to 6.1 +/- 0.2 Ma at 42 m; and 7.1 +/- 0.2 to 5.9 +/- 0.1 Ma at 45 in; 6.6 +/- 0.1 to 5.2 +/- 0.1 Ma at 60 in), yielding a weathering front propagation rate of 8.9 +/- 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and scbists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 +/- 3.1 t/km(2)/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with longterm saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of inflammatory cells and MPO (myeloperoxidase) in the arterial wall after vascular injury could increase neointima formation by modification of phospholipids. The present study investigates how these phospholipids, in particular oxidized and chlorinated species, are altered within injured vessels and how they affect VSMC (vascular smooth muscle cell) remodelling processes. Vascular injury was induced in C57BL/6 mice and high fat-fed ApoE-/- (apolipoprotein E) mice by wire denudation and ligation of the left carotid artery (LCA). Neointimal and medial composition was assessed using immunohistochemistry and ESI-MS. Primary rabbit aortic SMCs (smooth muscle cells) were utilized to examine the effects of modified lipids on VSMC proliferation, viability and migration at a cellular level. Neointimal area, measured as intima-to-media ratio, was significantly larger in wire-injured ApoE-/- mice (3.62±0.49 compared with 0.83±0.25 in C57BL/6 mice, n=3) and there was increased oxidized low-density lipoprotein (oxLDL) infiltration and elevated plasma MPO levels. Relative increases in lysophosphatidylcholines and unsaturated phosphatidylcholines (PCs) were also observed in wire-injured ApoE-/- carotid arteries. Chlorinated lipids had no effect on VSMC proliferation, viability or migration whereas chronic incubation with oxidized phospholipids stimulated proliferation in the presence of fetal calf serum [154.8±14.2% of viable cells at 1 μM PGPC (1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine) compared with control, n=6]. In conclusion, ApoE-/- mice with an inflammatory phenotype develop more neointima in wire-injured arteries and accumulation of oxidized lipids in the vessel wall may propagate this effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was made of mineral composition of sand- and silt-sized fractions of recent clastic (riftogenic) sediments and solidified deposits collected from the bottom of the Romanche Trench during the first voyage of R/V Akademik Kurchatov. Similarity between mineral compositions of sediments and bedrocks (ultrabasites, gabbroids, diabases) was established. This similarity is a basis for considering the mineral complex of the deposits that have been derived from the bedrocks of the trench slopes, and have formed due to their submarine denudation accompanied by tectonic crushing. The same mineral composition was found in pieces of older consolidated deposits; this suggests that conditions of sedimentation similar to those at recent times have existed for a long time in the Romanche Trench.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was made of mineral composition of sand- and silt-sized fractions of recent clastic (riftogenic) sediments and solidified deposits collected from the bottom of the Romanche Trench during the first voyage of R/V Akademik Kurchatov. Similarity between mineral compositions of sediments and bedrocks (ultrabasites, gabbroids, diabases) was established. This similarity is a basis for considering the mineral complex of the deposits that have been derived from the bedrocks of the trench slopes, and have formed due to their submarine denudation accompanied by tectonic crushing. The same mineral composition was found in pieces of older consolidated deposits; this suggests that conditions of sedimentation similar to those at recent times have existed for a long time in the Romanche Trench.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.

The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.

I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.

I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.

Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.

In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.