986 resultados para Demersal Zooplankton
Resumo:
Caspian Sea has gone under a lot of changes due to human influences and the unwanted presence of a ctenophora Menomiopsis leidyi which has greatly changed the structure of planktons in the last recent years. Therefore, this study was carried out in order to determine these changes in the zooplankton community. the Sampling was done in 8 transacts in Astara, Anzali, Sefidrood, Tonekaboun, Noushahr, Babolsar, Amirabad and Bandar Torkaman coastal waters at 5 different depths including 5, 10, 20, 50 and 100 m. Sampling was carried out in four seasons of spring, summer, autumn and winter during 2008, 2009 and 2010 on board of R/V Gilan. Altogether, 12 species of zooplankton were identified in 2008, 22 species in 2009 and 14 species in 2010. The zooplankton included four groups: copepoda (4 species), cladocera (8species), rotatoria (10 species) and protozoa (2 species).The increase of diversity in 2009 was due to cladocera and rotatoria groups. The abundance of zooplankton in the spring was 5074 + 7807 ind/m3 more than other season in 2008. The abundance of copepoda in the summer reached the highest value of 3332 ind/m3 and since autumn the abundance gradually decreases and in the winter reached to the lowest value. The most abundance of cladocera was 797 ind/m3 in winter and decreased in summer and autumn. The abundance of rotatoria was 2189 ind/m3 in winter. rotifera and copepoda consisted the main population of Zooplanktons in the winter. The results of 2009 and 2010 showed that the abundance of zooplankton in winter was 2.6 fold of autumn, 1.6 fold of summer and 1.1 fold (1/9 fold in 2010)of spring. After increasing increased of temperature, phytoplankton, and zooplankton in summer, M.leidyi increased too. In the autumn M. leidyi reached to the highest rate and decreased zooplankton. The maximum population of zooplankton was in the layer 0-20 m and in the layer more than 20 meters, the abundance of zooplankton decreased very much. In 216 2008, 2009 and 2010, the abundance of zooplankton was 87, 77 and 77 percent in the layer 0-20 m respectively. In this study, the thermocline was observed in the layer 10 – 20 meters in the spring, that formed a thin layer but in the summer it was in the layer 20 to 50 meters. Temperature decreased between 11 to 15 oC in this layer. The variation of temperature between surfaces to bottom was 10 to 13 oC in spring, 19 to 21 in summer, about 9 oC in autumn and maximum 3 oC in winter. The most biomass of zooplankton was in the west. The biomass of zooplankton in central west and east of Southern of Caspian Sea was 54 %, 22 % and 24 % respectively in 2008, in 2009 was 48%, 33% and 20% respectively and in 2010 was 54 %, 29 % and 16 % respectively .The biomass decreased from west to east. The model of zooplankton designed by principal component analysis (PCA)and linear regression for Southern of Caspian Sea.
Resumo:
Biological diversity of an ecosystem is considered a reliable measure of the state of health of the ecosystem. In Uganda's large lakes, the Victoria and Kyoga, the past three decades have been characterized by profound changes in fish species composition following the introduction of the piscivorous Nile perch (Oguto-Ohwayo 1990). Over 300 haplochromine cichlid species comprising a wide range of trophic groups were lost along with a host of non-cichlid fishes which occupied virtually all available ecological niches and in the lakes (Witte 1992). A second major ecological event has been the gradual nutrient enrichment of the water bodies (eutrophication) from diffuse and point sources, while at the same time pollutants have also gained entrance into the water systems in pace with indusfrial development and human population increases in the lake basins. Eutrophication and pollution have drastically altered the physical and-chemical character of the water medium in which different fauna and flora thrive. In Lake Victoria these alterations have resulted in changes of algal species composition from pristine community dominated by chlorophytes and diatoms (Melosira etc) to one composed largely of blue-green algae or Cyanobacteria (Microcystis, Anabaena, Planktolyngbya etc) (Mugidde 1993, Hecky 1993).
Resumo:
A generalized bottom trawl exploratory survey was carried out on Lake Victoria to: (i) define the distributional pattern and magnitude of the lakewide demersal stocks, (ii) determine the commercial potential of Haplochromis spp. and (iii) evaluate trawling as a commercial fishing technique for Lake Victoria fisheries. Preliminary results suggest that: (i) bottom trawl catches are more representative of the stocks, (ii) species diversification and fish density decrease with increasing mean depth and (iii) at least 80%of the catchable demersal ichthyomass is Haplochromis. Though bottom trawling is a much more efficient fishing technique for the Lake Victoria fisheries, bio-socio-economic consideration impose that mechanization of the fishery should better proceed in graded steps. Besides demographic and nutritional considerations indicate the necessity for rational management and increased direct human utilization of the fishery resource.
Resumo:
In order to explore the temporal impacts of a small dam on riverine zooplankton, monthly samples were conducted from November 2005 to June 2006 in a reach of Xiangxi River, China, which is affected by a small hydropower plant. A total of 56 taxa of zooplankton were recorded during the study and rotifers were the most abundant group, accounting for 97% of total taxa, while the others were copepod nauplii and copepod adults. This study indicated that: (1) the small dam in the Xiangxi River study area created distinct physical and ecological conditions relative to free-flowing lotic reaches despite the constrained channel and small size of the dam; (2) the existence of the plant's small dam had a significant effect on the zooplankton community. In long periods of drought or dry seasons the effect of the dam on potamoplankton was more pronounced (e.g., November, February, March, and May). But the downfall or the connectivity of channel appeared to decrease the effect of small hydropower plants on riverine zooplankton (e.g., April). The present observation underscores the need for additional studies that provide more basic data on riverine zooplankton communities and quantify ecological responses to dam construction over longer time spans.
Resumo:
During 28-29, September 2005, water was drawn from Hanjiang River and Houguan Lake to the Yangzi River via Sanjiao Lake and Nantaizi Lake in Wuhan in order to provide favorable conditions for ecosystem restoration. To evaluate the feasibility and validity of drawing water as a means of ecosystem restoration, zooplankton populations were studied 3 times (before, immediately after finishing and a month after drawing water) at seven locations from 27 Sept. 2005 to 2 Nov. 2005. Water quality in the lakes was mostly improved and zooplankton species richness decreased as soon as drawing water had finished but increased a month after drawing water. Zooplankton density and biomass was reduced in the lakes by drawing water but was increased at the entrance to Sanjiao Lake because of landform geometry change. Before drawing water, most species in Sanjiao Lake e.g., Brachionus sp. and Keratella sp. were tolerant of contamination. After drawing water oligotrophic-prone species such as Lecane ludwigii and Gastropus stylifer emerged. We conclude that drawing water could be important for improving water quality and favour ecosystem restoration. Dilution of nutrient concentrations may be an important role in the effect.
Resumo:
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l(-1)) and biomass (5.2 mg l(-1)) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0-100 mg l(-1) (r = -0.82, P < 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.
Resumo:
A comparative limnological study was carried out to present a snapshot of crustacean zooplankton communities and their relations to environmental factors to test whether there is a consistent relationship between crustacean biomass and trophic indicators among lake groups with similar trophic conditions. The study lakes showed a wide range of trophic status, with total phosphorus (TP) ranging from 0.008 to 1.448mgL(-1), and chlorophyll a from 0.7 to 146.1 mu g L-1, respectively. About 38 species of Crustacea were found, of which Cladocera were represented by 25 taxa (20 genera), and Copepoda by 13 taxa (I I genera). The most common and dominant species were Bosmina coregoni, Moina micrura, Diaphanosoma brachyurum, Cyclops vicinus, Thermocyclops taihokuensis, Mesocyclops notius and Sinocalanus dorrii. Daphnia was rare in abundance. Canonical correspondence analysis showed that except for four species (D. hyalina, S. dorrii, C. vicinus and M. micrura), almost all the dominant species had the same preference for environmental factors. Temperature, predatory cyclopoids and planktivorous fishes seem to be the key factors determining species distribution. TP was a relatively better trophic indicator than chlorophyll a to predict crustacean biomass. Within the three groups of lakes, however, there was no consistent relationship between crustacean biomass and trophic indicators. The possible reason might be that top-down and bottom-up control on crustaceans vary with lake trophic state. The lack of significant negative correlation between crustacean biomass and chlorophyll a suggests that there was little control of phytoplankton biomass by macrozooplankton in these shallow subtropical lakes. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A total of 30 shallow lakes, located along the middle and lower reaches of the Yangtze River, were studied to assess the relative importance of nutrients and zooplankton biomass in determining the phytoplankton biomass in subtropical China. Zooplankton biomass and nutrients both varied greatly in these lakes. Factor analysis and multiple linear regression showed that phytoplankton biomass was positively correlated with TN, NH4+, NO3- and TP, while it did not show any negative relationship to zooplankton biomass. Meanwhile, the phytoplankton biomass showed contrary relationships to the mass ratio of TN/TP in spring and summer, suggesting that in nutrient-richer lakes the dominant phytoplankton species have different preferences for TN/TP ratio. The insignificant top-down control of phytoplankton biomass may be attributed to the dominance of small-sized crustaceans and low crustacean biomass resulting from cyanobacterial dominance and planktivorous fish predation as well as other factors. Thus, it is likely that nutrients were more important than zooplankton biomass in explaining the total variance of phytoplaDkton biomass in these subtropical lakes.
Resumo:
Crustacean zooplankton size structure in 27 aquaculture lakes was studied to test the hypothesis that larger size structure is associated with higher grazing pressure. Mean body length of crustaceans was positively correlated with increasing Chl a (r(2) = 0.40, P = 0.000) and TP (r(2) = 0.38, P = 0.000), contrary to the empirical studies. However, the ratio of zooplankton to phytoplankton biomass decreased significantly with increasing TP (r(2) = 0.27, P = 0.005) and mean body length (r(2) = 0.46, P = 0.000). Meanwhile, size structure showed no significant effect in explaining residual variations of phosphorus-chlorophyll relationship (P = 0.231). These results indicate that larger size structure was not always associated with higher zooplankton grazing pressure. It is likely that in aquaculture lakes crustacean zooplankton size structure was of minor importance in control of phytoplankton biomass, and it was mainly regulated by fish predation. The results showed in our study and the empirical studies might be a reflection of two different stages of lake eutrophication and fish predation intensity.
Resumo:
Changes in the zooplankton community structure in relation to fishery practices in Lake Donghu, Wuhan, China were examined. The number of Protozoa species increased slightly, whereas the number of rotifers and crustaceans decreased from the 1960s to the 1990s. The total annual average densities of zooplankton increased 15-20 times in the 1990s compared with the 1960s. This increase was largely attributed to Protozoa, which contributed 93.4% by number of the total zooplankton density in 1991. Cladoceran densities decreased markedly from 1987. Changes in densities of rotifers and copepods were not evident. Trends in zooplankton biomass were similar to density. Large changes in zooplankton community structure coincided with markedly changes in concentration of chlorophyll a and transparency in Lake Donghu in 1987. The year 1987 seems to be the threshold year when the zooplankton community structure changed considerably. These changes were related to continuously increasing fish stock biomass in the lake. It was suggested that fish stocking and fish biomass should be a better managed for improvement of the quality of the lake's environment.
Resumo:
Rotifer assemblage in the subtropical eutrophic Lake Chaohu was investigated monthly from September 2002 to August 2003. Forty-nine species belonging to 18 genera and 14 families were recorded. The highest densities of rotifer were observed during summer when there were heavy cyanobacterial blooms. There was a significant positive correlation between total rotifer density and the biomass of cyanobacteria. However, no correlations were found between the densities of rotifer and crustacean zooplankton, possibly owing to the paucity of large-bodied planktonic crustaceans. It is likely that the occurrence of cyanobacterial blooms not only caused the shift of dominant crustacean zooplankton from large species to smaller ones but also weakened the negative interaction between crustaceans and rotifers.
Resumo:
Long-term changes In the crustacean zooplankton community (calanoid and cyclopoid copepods and cladocerans) were studied in Lake Donghu, a shallow and eutrophic Chinese lake. This lake had been earlier stocked with two pump Alter-feeding Ashes, silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). During the 1950s and the mid-1980s, the ratio of copepods to cladocerans was relatively stable but showed a general increase thereafter. From the early-1980s to the 1990s, calanoid/cyclopoid ratios decreased obviously. In the 1990s, Cyclops vicinus, Diaphanosoma brachyurum, and Moina micrura were dominant the abundance of C. vicinus and M. micrura increased significantly; and D, brachyurum showed a substantial decrease. The study shows that under extremely high pressure of Ash predation, the species which could recover rapidly from fish predation would be the most likely to survive and increase their numbers.
Resumo:
From surveys made in 1962-1963, 1973-1974, 1979-1996 at two Stations in Lake Donghu, a shallow eutrophic water body near Wuhan, P. R. China, the authors, derive long-term changes in species composition, standing crop and body-size of planktonic crustaceans. The species number decreased from the 1960s to the 1990s. The cladocerans dropped from 46 (1960s) to 26 (1980s) to 13 (1990s); the copepods decreased from 14 (1960s) to 10 (1980s) to 7 (1990s). From the mid-1980s on, the dominant crustaceans also changed: Daphnia hyalina and D. carinata ssp. were replaced by Moina micrura and Diaphanosoma brachyurum at Stations 1 and 2, respectively; Cyclops vicinus replaced Mesocyclops leuckarti. Densities and biomass of Cladocera decreased markedly after 1987. Annual average densities and biomass of cladocerans were statistically differences between 1962-1986 and 1987-1996 (P < 0.01). Annual average densities of Daphnia (Station 1 + Station 2) were negatively correlated with fish yield. Since the 1980s, annual average body length of Cladocera and Calanoida decreased, while annual average body length of Cyclopoida increased. In the same years, average body length of copepods was lower during May-October than during January-April and November-December. A 12-yr data analysis showed annual average concentration of chlorophyll-a (Chl-a) to be negatively correlated with annual average density of Daphnia, whilst lake transparency was positively correlated with annual average densities of Daphnia. The results imply that, since Daphnia feeds efficiently on phytoplankton, it could decrease concentration of Chl-a, and enhance water transparency.
Resumo:
The community structure of zooplankton was studied in a eutrophic, fishless Japanese pond. The ecosystem was dominated by a dinoflagellate, Ceratium hirundinella, two filter-feeding cladocerans, Daphnia rosea and Ceriodaphnia reticulata, and an invertebrate predator, the dipteran Chaoborus flavicans. The midsummer zooplankton community showed a large change in species composition (the Daphnia population crashed) when a heavy Ceratium bloom occurred. It is shown that (i) the rapid density decline of D.rosea in mid-May was mainly caused by a shortage of edible phytoplankton, which was facilitated by the rapid increase in C.hirundinella abundance; (ii) the low density of D.rosea in June-July was considered to be mainly caused by the blooming of Ceratium hirundinella (which may inhibit the feeding process of D.rosea), while predation by C.flavicans larvae, the changing temperature, the interspecific competition and the scarcity of edible algae were not judged to be important; (iii) the high summer biomass of the planktonic C.flavicans larvae was maintained by the bloom of C.hirundinella, because >90% of the crop contents of C.flavicans larvae were C.hirundinella during this period. The present study indicates that the large-sized cells or colonies of phytoplankton are not only inedible by most cladocerans, but the selective effect of the blooming of these algae can also influence the composition and dominance of the zooplankton community, especially for the filter-feeding Cladocera, in a similar way as the selective predation by planktivorous fish. The large-sized phytoplankton can also be an important alternative food for ominivorous invertebrate predators such as Chaoborus larvae, and thus may affect the interactions between these predators and their zooplanktonic prey. In this way, such phytoplankton may play a very important role in regulating the dynamics of the aquatic food web, and become a driving force in shaping the community structure of zooplankton.
Resumo:
We examined the responses of zooplankton community, water transparency, chlorophyll a and nutrients to manipulation of density of silver carp (Hypophthyalmichthys molitrix) in an one-way factorial experiment using enclosures placed in Donghu (East Lake, 30 degrees 33' N, 114 degrees 23' E), located in Wuhan, P. R. China. Enclosures (18.75 m(3)) were treated with four silver carp densities, 0, 81, 225, 485 g/m(2). Total zooplankton abundance (excluding nauplii and rotifers except for Asplanchna sp.) and the mean size of dominant cladoceran species were significantly greater in enclosures with 0 and 81 fish densities than those in enclosures with 225 and 485 fish densities. Water transparency also improved significantly when silver carp densities were 0 or 81 g/m(2). We did not find significant effects of silver carp density on chlorophyll a, total phosphorus, or total nitrogen concentrations. We conclude that by reducing planktivorous fish to below the current density (190 g/m(2)), the zooplankton community can be shifted from the dominance of small-bodied Moina sp. to dominance of large-bodied Daphnia sp. Further, the water clarity can be increased.