887 resultados para Deficit targets
Resumo:
A farmacogenética tem por objetivo a identificação de diferenças genéticas entre indivíduos que possam influenciar a resposta à terapêutica farmacológica, melhorando a sua eficácia e segurança. Associado à farmacogenética surge a “medicina personalizada”, ou seja, em oposição à existência de um fármaco que consiga tratar todos os pacientes, o tratamento individualizado parece o caminho mais promissor, uma vez que reduz o risco de reações adversas por toxicidade (segurança), adequa a dose ao indivíduo, evitando excessos ou défices (dose) e evita a metodologia de tentativa erro na escolha do fármaco (eficácia). A farmacogenética é relevante para a resposta individual ao fármaco por duas vias distintas: a farmacocinética e a farmacodinâmica. A variabilidade genética pode afetar a forma como um fármaco pode ser absorvido, ativado, metabolizado ou excretado, podendo conduzir assim a uma variabilidade na resposta. De entre o número infindável de possíveis exemplos, nesta revisão apresentam-se exemplos relacionados com os genes do Citocromo P450, do gene NAT2 e do gene da Colinesterase. As diferenças genéticas entre os indivíduos podem ainda afetar a resposta ao fármaco pela sua farmacodinâmica, ou seja, a resposta específica do alvo ao fármaco. De entre a multiplicidade de alvos de fármacos existentes serão apresentados exemplos do gene da G6PD e do VKORC1. Apesar de alguns dados científicos indicarem benefício para o paciente, ainda está longe de a farmacogenética fazer parte da prática clínica de rotina, talvez porque os custos-benefícios ainda não foram avaliados de forma precisa.
Resumo:
The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.
Resumo:
Dissertation submitted to obtain a Ph.D. (Doutoramento) degree in Biology at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
Prostate cancer (PCa) is one of the most incident cancers worldwide but clinical and pathological parameters have limited ability to discriminate between clinically significant and indolent PCa. Altered expression of histone methyltransferases and histone methylation patterns are involved in prostate carcinogenesis. SMYD3 transcript levels have prognostic value and discriminate among PCa with different clinical aggressiveness, so we decided to investigate its putative oncogenic role on PCa.We silenced SMYD3 and assess its impact through in vitro (cell viability, cell cycle, apoptosis, migration, invasion assays) and in vivo (tumor formation, angiogenesis). We evaluated SET domain's impact in PCa cells' phenotype. Histone marks deposition on SMYD3 putative target genes was assessed by ChIP analysis.Knockdown of SMYD3 attenuated malignant phenotype of LNCaP and PC3 cell lines. Deletions affecting the SET domain showed phenotypic impact similar to SMYD3 silencing, suggesting that tumorigenic effect is mediated through its histone methyltransferase activity. Moreover, CCND2 was identified as a putative target gene for SMYD3 transcriptional regulation, through trimethylation of H4K20.Our results support a proto-oncogenic role for SMYD3 in prostate carcinogenesis, mainly due to its methyltransferase enzymatic activity. Thus, SMYD3 overexpression is a potential biomarker for clinically aggressive disease and an attractive therapeutic target in PCa.
Resumo:
Secondary hyperparathyroidism is a common complication of chronic kidney disease. The elevated serum intact parathyroid hormone, phosphorus, calcium and calcium x phosphorus product have been independently associated with an increased relative risk of mortality. The standard therapy for secondary hyperparathyroidism, including active vitamin D analogues and phosphate binders, is often insufficient to allow patients to achieve the recommended Kidney Disease Outcomes Quality Initiative targets for bone and mineral metabolism. Randomised controlled phase III clinical studies in chronic kidney disease patients with secondary hyperparathyroidism have shown that cinacalcet treatment increases the proportion of patients achieving the recommended Kidney Disease Outcomes Quality Initiative targets for intact parathyroid hormone, phosphorus, calcium and calcium x phosphorus product. Aims: This observational multicentre study aims to evaluate cinacalcet’s ability to achieve and maintain Kidney Disease Outcomes Quality Initiative targets in a population with secondary hyperparathyroidism on chronic haemodialysis in Portugal. Patients and Methods: Patients on chronic dialysis that received cinacalcet during a free sampling programme were enrolled. Retrospective and prospective monthly data were collected from 3 months before until 6 months after the beginning of cinacalcet treatment. Additional assessment included a 12 month evaluation of all parameters. Results: 140 dialysis patients with secondary hyperparathyroidism were enrolled, 60% male, mean age 57.4±14.1 years. The mean intact parathyroid hormone, calcium, phosphorus, and calcium x phosphorus product values at baseline were 751.7±498.8 pg/ml, 9.7±3.8 mg/dl, 5.5±1.5 mg/dl, and 52.7±25.3 mg2/dl2, respectively. After 6 months’ cinacalcet treatment, 26.2%, 53.6%, 59.3%, and 81.0% of the patients achieved the Kidney Disease Outcomes Quality Initiative recommended levels for intact parathyroid hormone, calcium, phosphorus, and calcium x phosphorus product, respectively. The mean dose of cinacalcet at 6 months was 57.1±29.7 mg/day. Conclusions: The use of cinacalcet in clinical practice is an effective option for the treatment of secondary hyperparathyroidism in chronic dialysis patients, allowing more patients to reach and maintain the Kidney Disease Outcomes Quality Initiative targets.
Resumo:
This dissertation is presented to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa
Resumo:
From 1995 to 2010 Portugal has accumulated a negative international asset position of 110 percent of GDP. In a developed and aging economy the number is astonishing and any argument to consider it sustainable must rely on extremely favorable forecasts on growth. Portuguese policy options are reduced in number: no autonomous monetary policy, no currency to devaluate, and limited discretion in changing fiscal deficits and government debt. To start the necessary deleveraging a remaining possible policy is a budget-neutral change of the tax structure that increases private saving and net exports. An increase in the VAT and a decrease in the employer’s social security contribution tax can achieve the desired outcome in the short run if they are complemented with wage moderation. To obtain a substantial improvement in competitiveness and a large decrease in consumption, the changes in the tax rates have to be large. While a precise quantitative assessment is difficult, the initial increase in the effective VAT rate needed to allow the social security tax to decrease by 16 percentage points (pp) is approximately 10 pp. Such a large increase in the effective VAT rate could be obtained by raising most of the reduced VAT rates to the new general VAT rate of 23 percent. The empirical analysis shows that over time the suggested tax swap could generate surpluses and improve the trade balance. A temporary version of the suggested tax-swap has the attractiveness to achieve a sharper increase in the private saving rate maintaining the short run gains in competitiveness. Finally, the temporary version of the fiscal devaluation could be the basis for an automatic stabilizer to external imbalances within a monetary union.Portugal has been running large current account deficits every year since 1995. These deficits have accumulated to an astonishing 110 percent of GDP negative external asset position. The sustainability of such a large external position is questionable and must rely on fantastic productivity growth expectations. The recent global financial crisis appears to have anticipated the international investors reality check on those future expectations with the result of a large increase in the cost of external financing. Today the rebalancing of the current account through an increase in national savings and an improvement in competitiveness must be at the top of the Portuguese authorities “to do” list as the cost of a pull out from international investors is of the order of 10% of GDP. The external rebalancing is difficult as the degrees of freedom of the Portuguese authorities are limited in number: they have no autonomous monetary policy, no currency to devaluate, and little discretion in fiscal policy as deficit limits and debt targets are set by the Stability Growth Pact and the postcrisis consensus on medium-term fiscal consolidation. One possibility that remains is to change the fiscal policy mix for a given budget deficit. The purpose of this paper is to explore the effects of a “fiscal devaluation”1 obtained through a tax swap between employers’ social security contributions and taxes on consumption2. The paper begins by illustrating Portugal’s current account evolution during the euro period. The second section section lays out a model to offer a qualitative assessment of the dynamic outcomes of the the tax swap. I show that the suggested tax swap can in theory achieve the desired outcomes in terms of competitiveness and consumption if complemented with moderation (stickiness) in wages. I also study the effects of a temporary version of the tax swap and show that it achieves a sharper improvement in the current account that accelerate the rebalancing. The third section moves to the empirical analysis and estimates the likely effects of the tax swap for the Portuguese economy. The fourth section concludes.
Resumo:
The purpose of this study was to identify parents and obtain segregating populations of cowpea (Vigna unguiculata L. Walp.) with the potential for tolerance to water deficit. A full diallel was performed with six cowpea genotypes, and two experiments were conducted in Teresina, PI, Brazil in 2011 to evaluate 30 F2 populations and their parents, one under water deficit and the other under full irrigation.
Resumo:
Cell-to-cell communication is required for many biological processes in development and adult life. One of the most common systems utilized by a wide range of eukaryotes is the Notch signalling pathway. Four Notch receptors and five ligands have been identified in mammals that interact via their extracellular domains leading to transcription activation. Studies have shown that the Notch ligands expression is undetectable in normal breast tissues, but moderate to high expression has been detected in breast cancer. Thus, any of the Notch1 ligands can be studied as possible therapeutic targets for breast cancer. To study Notch pathway proteins there is the need to obtain stable protein solutions. E. coli is the host of excellence for recombinant proteins for the ease of use, fast growth and high cell densities. However, the expression of mammalian proteins in such systems may overwhelm the bacterial cellular machinery, which does not possess the ability for post-translational modifications, or dedicated compartments for protein synthesis. Mammalian cells are therefore preferred, despite their technical and financial increased demands. We aim to determine the best expression and purification conditions for the different ligand protein constructs, to develop specific function-blocking antibodies using the Phage Display technology. Moreover, we propose to crystallize the Notch1 ligands alone and in complex with the phage display selected antibodies, unveiling molecular details. hJag2DE3 and hDll1DE6 proteins were purified from refolded inclusion bodies or mammalian cell culture supernatants, respectively, and purity was confirmed by SDS-PAGE (>95%). Protein produced in mammalian cells showed to be more stable, apparently with the physiological disulfide pattern, contrary to what was observed in the refolded protein. Several nano-scale crystallization experiments were set up in 96-well plates, but no positive result was obtained. We will continue to pursue for the best expression for the Notch ligand constructs in both expression systems.
Resumo:
Review article Martins, P., Marques, M., Coito, L., Pombeiro, A.J.L., Baptista, P.V., Fernandes, A.R. 2014. Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions. Anti-cancer Agents in Medicinal Chemistry 14. PMID: 25173559
Resumo:
Part of this thesis will be published in the following: Gomes, B.C., Santos, B. 2015. Methods for studying microRNAs expression and their targets in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissues. In Methods in Molecular Biology: Cancer Drug Resistance (Rueff, J. & Rodrigues, A.S. eds), Springer Protocols.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.
Resumo:
The identification of new and druggable targets in bacteria is a critical endeavour in pharmaceutical research of novel antibiotics to fight infectious agents. The rapid emergence of resistant bacteria makes today's antibiotics more and more ineffective, consequently increasing the need for new pharmacological targets and novel classes of antibacterial drugs. A new model that combines the singular value decomposition technique with biological filters comprised of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of E. coli has been developed to predict potential drug targets in the Enterobacteriaceae family [1]. This model identified 99 potential target proteins amongst the studied bacterial family, exhibiting eight different functions that suggest that the disruption of the activities of these proteins is critical for cells. Out of these candidates, one was selected for target confirmation. To find target modulators, receptor-based pharmacophore hypotheses were built and used in the screening of a virtual library of compounds. Postscreening filters were based on physicochemical and topological similarity to known Gram-negative antibiotics and applied to the retrieved compounds. Screening hits passing all filters were docked into the proteins catalytic groove and 15 of the most promising compounds were purchased from their chemical vendors to be experimentally tested in vitro. To the best of our knowledge, this is the first attempt to rationalize the search of compounds to probe the relevance of this candidate as a new pharmacological target.