897 resultados para Decision tree method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a new technique in the investigation of limited-dependent variable models. This paper illustrates that variable precision rough set theory (VPRS), allied with the use of a modern method of classification, or discretisation of data, can out-perform the more standard approaches that are employed in economics, such as a probit model. These approaches and certain inductive decision tree methods are compared (through a Monte Carlo simulation approach) in the analysis of the decisions reached by the UK Monopolies and Mergers Committee. We show that, particularly in small samples, the VPRS model can improve on more traditional models, both in-sample, and particularly in out-of-sample prediction. A similar improvement in out-of-sample prediction over the decision tree methods is also shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allergy is an overreaction by the immune system to a previously encountered, ordinarily harmless substance - typically proteins - resulting in skin rash, swelling of mucous membranes, sneezing or wheezing, or other abnormal conditions. The use of modified proteins is increasingly widespread: their presence in food, commercial products, such as washing powder, and medical therapeutics and diagnostics, makes predicting and identifying potential allergens a crucial societal issue. The prediction of allergens has been explored widely using bioinformatics, with many tools being developed in the last decade; many of these are freely available online. Here, we report a set of novel models for allergen prediction utilizing amino acid E-descriptors, auto- and cross-covariance transformation, and several machine learning methods for classification, including logistic regression (LR), decision tree (DT), naïve Bayes (NB), random forest (RF), multilayer perceptron (MLP) and k nearest neighbours (kNN). The best performing method was kNN with 85.3% accuracy at 5-fold cross-validation. The resulting model has been implemented in a revised version of the AllerTOP server (http://www.ddg-pharmfac.net/AllerTOP). © Springer-Verlag 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Decision-making in product quality is an indispensable stage in product development, in order to reduce product development risk. Based on the identification of the deficiencies of quality function deployment (QFD) and failure modes and effects analysis (FMEA), a novel decision-making method is presented that draws upon a knowledge network of failure scenarios. An ontological expression of failure scenarios is presented together with a framework of failure knowledge network (FKN). According to the roles of quality characteristics (QCs) in failure processing, QCs are set into three categories namely perceptible QCs, restrictive QCs, and controllable QCs, which present the monitor targets, control targets and improvement targets respectively for quality management. A mathematical model and algorithms based on the analytic network process (ANP) is introduced for calculating the priority of QCs with respect to different development scenarios. A case study is provided according to the proposed decision-making procedure based on FKN. This methodology is applied in the propeller design process to solve the problem of prioritising QCs. This paper provides a practical approach for decision-making in product quality. Copyright © 2011 Inderscience Enterprises Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Algorithms for concept drift handling are important for various applications including video analysis and smart grids. In this paper we present decision tree ensemble classication method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with îriginal random forest with incorporated replace-the-looser forgetting andother state-of-the-art concept-drift classiers like AWE2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling problems. Following the basic idea behind CBR, the solutions of previously solved problems are employed to aid finding the solutions for new problems. A list of feature-value pairs is insufficient to represent all the necessary information. We show that attribute graphs can represent more information and thus can help to retrieve re-usable cases that have similar structures to the new problems. The case base is organised as a decision tree to store the attribute graphs of solved problems hierarchically. An example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results from our experiments show the effectiveness of the retrieval and adaptation in the proposed method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brazil is internationally acknowledged for its renewable sources, most notably, hydroelectric power plant projects which correspond to 65% of electricity production supply to the National Interconnected System. The main question behind this research is: what are the weights and the relative importance of the variables which have influence on the decision making process for the expansion of hydroelectric generation projects in Parana? The main objective is to propose a multi-criteria decision procedure, in association with water sources options that take into consideration the weight and relative importance of the alternatives having influence on the decision by enterprises in the generation of electricity in the state of Paraná. As far as the approach to the problem is concerned, this research can be classified as having mixed methodologies, applying Content Analysis, Delphi technique and the Analytic Hierarchy Process. Following Delphi methodology, a group of 21 was selected for data collection, all of those linked to Paranaense hydroelectricity market. And the main result was the construction of a decision tree in which it was possible to identify the importance and relative weight of the elements associated with the four dimensions of energy. In environmental dimension, the highest relative weight was placed on the loading capacity of Parana system; the economic dimension, the amortization of investment; in social dimension, the generation of direct work places and in institutional dimension, the availability of suitable sources of financing. Policy makers and business managers make their decisions based on specific criteria related to the organization segment, market information, economic and political behavior among other indicators that guide them in dealing with the typical tradeoffs of projects in hydropower area. The results obtained in the decision tree show that the economic bias is still the main factor in making investment decisions. However, environmental impacts on the State loading capacity, income generation, providing opportunities for direct as well as indirect jobs. And at an institutional level, the absence of funding sources show that the perception of experts is focused on other issues beyond the logic behind development per se. The order of priority of variables in this study indicates that in the current environment of uncertainty in the Brazilian economy as many variables must be analyzed and compared in order to optimize the scarce resources available to expand local development in relation to Paranaense water matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper aims to broaden the applicability of the assessment methodology of investment projects through real options as a key element for investment decision making -- Traditional project valuation methodologies are described and their gaps, which special characteristic is uncertainty, are presented -- A parallel between financial and real options that could be used for valuation is made, using the binomial tree method -- Finally, a case study in the construction sector shows a project valuation using expand and waiting options

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to find relations between the socioeconomic characteristics, activity participation, land use patterns and travel behavior of the residents in the Sao Paulo Metropolitan Area (SPMA) by using Exploratory Multivariate Data Analysis (EMDA) techniques. The variables influencing travel pattern choices are investigated using: (a) Cluster Analysis (CA), grouping and characterizing the Traffic Zones (17), proposing the independent variable called Origin Cluster and, (b) Decision Tree (DT) to find a priori unknown relations among socioeconomic characteristics, land use attributes of the origin TZ and destination choices. The analysis was based on the origin-destination home-interview survey carried out in SPMA in 1997. The DT application revealed the variables of greatest influence on the travel pattern choice. The most important independent variable considered by DT is car ownership, followed by the Use of Transportation ""credits"" for Transit tariff, and, finally, activity participation variables and Origin Cluster. With these results, it was possible to analyze the influence of a family income, car ownership, position of the individual in the family, use of transportation ""credits"" for transit tariff (mainly for travel mode sequence choice), activities participation (activity sequence choice) and Origin Cluster (destination/travel distance choice). (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to identify key factors of a sustainable urban mobility concept in a particular context. A multiple criteria decision analysis method was developed to identify the main variables associated to the concept. Looking at the results obtained in 11 cities of the five Brazilian regions, we conclude that the method is able to capture the different views and approaches discussed in the formulation of the mobility concept. Therefore, it can be used as a starting point for the formulation of public policies and also in the development of tools designed for monitoring the mobility conditions. (C) 2008 Elsevier Ltd. All rights reserved.