786 resultados para Data mining models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current data mining engines are difficult to use, requiring optimizations by data mining experts in order to provide optimal results. To solve this problem a new concept was devised, by maintaining the functionality of current data mining tools and adding pervasive characteristics such as invisibility and ubiquity which focus on their users, providing better ease of use and usefulness, by providing autonomous and intelligent data mining processes. This article introduces an architecture to implement a data mining engine, composed by four major components: database; Middleware (control); Middleware (processing); and interface. These components are interlinked but provide independent scaling, allowing for a system that adapts to the user’s needs. A prototype has been developed in order to test the architecture. The results are very promising and showed their functionality and the need for further improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Data Mining, Data Streams, Classification, Clustering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Mining, Vision Restoration, Treatment outcome prediction, Self-Organising-Map

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the role of institutions in determining per capita income levels and growth. It contributes to the empirical literature by using different variables as proxies for institutions and by developing a deeper analysis of the issues arising from the use of weak and too many instruments in per capita income and growth regressions. The cross-section estimation suggests that institutions seem to matter, regardless if they are the only explanatory variable or are combined with geographical and integration variables, although most models suffer from the issue of weak instruments. The results from the growth models provides some interesting results: there is mixed evidence on the role of institutions and such evidence is more likely to be associated with law and order and investment profile; government spending is an important policy variable; collapsing the number of instruments results in fewer significant coefficients for institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le "data mining", ou "fouille de données", est un ensemble de méthodes et de techniques attractif qui a connu une popularité fulgurante ces dernières années, spécialement dans le domaine du marketing. Le développement récent de l'analyse ou du renseignement criminel soulève des problèmatiques auxqwuelles il est tentant de d'appliquer ces méthodes et techniques. Le potentiel et la place du data mining dans le contexte de l'analyse criminelle doivent être mieux définis afin de piloter son application. Cette réflexion est menée dans le cadre du renseignement produit par des systèmes de détection et de suivi systématique de la criminalité répétitive, appelés processus de veille opérationnelle. Leur fonctionnement nécessite l'existence de patterns inscrits dans les données, et justifiés par les approches situationnelles en criminologie. Muni de ce bagage théorique, l'enjeu principal revient à explorer les possibilités de détecter ces patterns au travers des méthodes et techniques de data mining. Afin de répondre à cet objectif, une recherche est actuellement menée au Suisse à travers une approche interdisciplinaire combinant des connaissances forensiques, criminologiques et computationnelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA microarray technology has arguably caught the attention of the worldwide life science community and is now systematically supporting major discoveries in many fields of study. The majority of the initial technical challenges of conducting experiments are being resolved, only to be replaced with new informatics hurdles, including statistical analysis, data visualization, interpretation, and storage. Two systems of databases, one containing expression data and one containing annotation data are quickly becoming essential knowledge repositories of the research community. This present paper surveys several databases, which are considered "pillars" of research and important nodes in the network. This paper focuses on a generalized workflow scheme typical for microarray experiments using two examples related to cancer research. The workflow is used to reference appropriate databases and tools for each step in the process of array experimentation. Additionally, benefits and drawbacks of current array databases are addressed, and suggestions are made for their improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imaging mass spectrometry (IMS) represents an innovative tool in the cancer research pipeline, which is increasingly being used in clinical and pharmaceutical applications. The unique properties of the technique, especially the amount of data generated, make the handling of data from multiple IMS acquisitions challenging. This work presents a histology-driven IMS approach aiming to identify discriminant lipid signatures from the simultaneous mining of IMS data sets from multiple samples. The feasibility of the developed workflow is evaluated on a set of three human colorectal cancer liver metastasis (CRCLM) tissue sections. Lipid IMS on tissue sections was performed using MALDI-TOF/TOF MS in both negative and positive ionization modes after 1,5-diaminonaphthalene matrix deposition by sublimation. The combination of both positive and negative acquisition results was performed during data mining to simplify the process and interrogate a larger lipidome into a single analysis. To reduce the complexity of the IMS data sets, a sub data set was generated by randomly selecting a fixed number of spectra from a histologically defined region of interest, resulting in a 10-fold data reduction. Principal component analysis confirmed that the molecular selectivity of the regions of interest is maintained after data reduction. Partial least-squares and heat map analyses demonstrated a selective signature of the CRCLM, revealing lipids that are significantly up- and down-regulated in the tumor region. This comprehensive approach is thus of interest for defining disease signatures directly from IMS data sets by the use of combinatory data mining, opening novel routes of investigation for addressing the demands of the clinical setting.