964 resultados para Data Throughput


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My PhD project was focused on Atlantic bluefin tuna, Thunnus thynnus, a fishery resource overexploited in the last decades. For a better management of stocks, it was necessary to improve scientific knowledge of this species and to develop novel tools to avoid collapse of this important commercial resource. To do this, we used new high throughput sequencing technologies, as Next Generation Sequencing (NGS), and markers linked to expressed genes, as SNPs (Single Nucleotide Polymorphisms). In this work we applied a combined approach: transcriptomic resources were used to build cDNA libreries from mRNA isolated by muscle, and genomic resources allowed to create a reference backbone for this species lacking of reference genome. All cDNA reads, obtained from mRNA, were mapped against this genome and, employing several bioinformatics tools and different restricted parameters, we achieved a set of contigs to detect SNPs. Once a final panel of 384 SNPs was developed, following the selection criteria, it was genotyped in 960 individuals of Atlantic bluefin tuna, including all size/age classes, from larvae to adults, collected from the entire range of the species. The analysis of obtained data was aimed to evaluate the genetic diversity and the population structure of Thunnus thynnus. We detect a low but significant signal of genetic differentiation among spawning samples, that can suggest the presence of three genetically separate reproduction areas. The adult samples resulted instead genetically undifferentiated between them and from the spawning populations, indicating a presence of panmictic population of adult bluefin tuna in the Mediterranean Sea, without different meta populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’esperimento CMS a LHC ha raccolto ingenti moli di dati durante Run-1, e sta sfruttando il periodo di shutdown (LS1) per evolvere il proprio sistema di calcolo. Tra i possibili miglioramenti al sistema, emergono ampi margini di ottimizzazione nell’uso dello storage ai centri di calcolo di livello Tier-2, che rappresentano - in Worldwide LHC Computing Grid (WLCG)- il fulcro delle risorse dedicate all’analisi distribuita su Grid. In questa tesi viene affrontato uno studio della popolarità dei dati di CMS nell’analisi distribuita su Grid ai Tier-2. Obiettivo del lavoro è dotare il sistema di calcolo di CMS di un sistema per valutare sistematicamente l’ammontare di spazio disco scritto ma non acceduto ai centri Tier-2, contribuendo alla costruzione di un sistema evoluto di data management dinamico che sappia adattarsi elasticamente alle diversi condizioni operative - rimuovendo repliche dei dati non necessarie o aggiungendo repliche dei dati più “popolari” - e dunque, in ultima analisi, che possa aumentare l’“analysis throughput” complessivo. Il Capitolo 1 fornisce una panoramica dell’esperimento CMS a LHC. Il Capitolo 2 descrive il CMS Computing Model nelle sue generalità, focalizzando la sua attenzione principalmente sul data management e sulle infrastrutture ad esso connesse. Il Capitolo 3 descrive il CMS Popularity Service, fornendo una visione d’insieme sui servizi di data popularity già presenti in CMS prima dell’inizio di questo lavoro. Il Capitolo 4 descrive l’architettura del toolkit sviluppato per questa tesi, ponendo le basi per il Capitolo successivo. Il Capitolo 5 presenta e discute gli studi di data popularity condotti sui dati raccolti attraverso l’infrastruttura precedentemente sviluppata. L’appendice A raccoglie due esempi di codice creato per gestire il toolkit attra- verso cui si raccolgono ed elaborano i dati.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lo scopo dell'elaborato di tesi è la progettazione e lo sviluppo di alcuni moduli di un software per la lettura ad elevato throughput di dati da particolari dispositivi per elettrofisiologia sviluppati dall'azienda Elements s.r.l. Elements produce amplificatori ad alta precisione per elettrofisiologia, in grado di misurare correnti a bassa intensità prodotte dai canali ionici. Dato il grande sviluppo che l'azienda sta avendo, e vista la previsione di introdurre sul mercato nuovi dispositivi con precisione e funzionalità sempre migliori, Elements ha espresso l'esigenza di un sistema software che fosse in grado di supportare al meglio i dispositivi già prodotti, e, soprattutto, prevedere il supporto dei nuovi, con prestazioni molto migliori del software già sviluppato da loro per la lettura dei dati. Il software richiesto deve fornire una interfaccia grafica che, comunicando con il dispositivo tramite USB per leggere dati da questo, provvede a mostrarli a schermo e permette di registrarli ed effettuare basilari operazioni di analisi. In questa tesi verranno esposte analisi, progettazione e sviluppo dei moduli di software che si interfacciano direttamente con il dispositivo, quindi dei moduli di rilevamento, connessione, acquisizione ed elaborazione dati.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big data è il termine usato per descrivere una raccolta di dati così estesa in termini di volume,velocità e varietà da richiedere tecnologie e metodi analitici specifici per l'estrazione di valori significativi. Molti sistemi sono sempre più costituiti e caratterizzati da enormi moli di dati da gestire,originati da sorgenti altamente eterogenee e con formati altamente differenziati,oltre a qualità dei dati estremamente eterogenei. Un altro requisito in questi sistemi potrebbe essere il fattore temporale: sempre più sistemi hanno bisogno di ricevere dati significativi dai Big Data il prima possibile,e sempre più spesso l’input da gestire è rappresentato da uno stream di informazioni continuo. In questo campo si inseriscono delle soluzioni specifiche per questi casi chiamati Online Stream Processing. L’obiettivo di questa tesi è di proporre un prototipo funzionante che elabori dati di Instant Coupon provenienti da diverse fonti con diversi formati e protocolli di informazioni e trasmissione e che memorizzi i dati elaborati in maniera efficiente per avere delle risposte in tempo reale. Le fonti di informazione possono essere di due tipologie: XMPP e Eddystone. Il sistema una volta ricevute le informazioni in ingresso, estrapola ed elabora codeste fino ad avere dati significativi che possono essere utilizzati da terze parti. Lo storage di questi dati è fatto su Apache Cassandra. Il problema più grosso che si è dovuto risolvere riguarda il fatto che Apache Storm non prevede il ribilanciamento delle risorse in maniera automatica, in questo caso specifico però la distribuzione dei clienti durante la giornata è molto varia e ricca di picchi. Il sistema interno di ribilanciamento sfrutta tecnologie innovative come le metriche e sulla base del throughput e della latenza esecutiva decide se aumentare/diminuire il numero di risorse o semplicemente non fare niente se le statistiche sono all’interno dei valori di soglia voluti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tick-borne encephalitis (TBE), a viral infection of the central nervous system, is endemic in many Eurasian countries. In Switzerland, TBE risk areas have been characterized by geographic mapping of clinical cases. Since mass vaccination should significantly decrease the number of TBE cases, alternative methods for exposure risk assessment are required. We established a new PCR-based test for the detection of TBE virus (TBEV) in ticks. The protocol involves an automated, high-throughput nucleic acid extraction method (QIAsymphony SP system) and a one-step duplex real-time reverse transcription-PCR (RT-PCR) assay for the detection of European subtype TBEV, including an internal process control. High usability, reproducibility, and equivalent performance for virus concentrations down to 5 x 10(3) viral genome equivalents/microl favor the automated protocol compared to the modified guanidinium thiocyanate-phenol-chloroform extraction procedure. The real-time RT-PCR allows fast, sensitive (limit of detection, 10 RNA copies/microl), and specific (no false-positive test results for other TBEV subtypes, other flaviviruses, or other tick-transmitted pathogens) detection of European subtype TBEV. The new detection method was applied in a national surveillance study, in which 62,343 Ixodes ricinus ticks were screened for the presence of TBE virus. A total of 38 foci of endemicity could be identified, with a mean virus prevalence of 0.46%. The foci do not fully agree with those defined by disease mapping. Therefore, the proposed molecular test procedure constitutes a prerequisite for an appropriate TBE surveillance. Our data are a unique complement of human TBE disease case mapping in Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been on assessing univariate associations between gene expression with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to consideration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed method to simulated data as well as data from a recently published prostate cancer study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The recent development of semi-automated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. Methods: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. Results: We found that graphical representations can reveal substantial non-biological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. Conclusions: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the simultaneous estimation of a large number of related quantities, multilevel models provide a formal mechanism for efficiently making use of the ensemble of information for deriving individual estimates. In this article we investigate the ability of the likelihood to identify the relationship between signal and noise in multilevel linear mixed models. Specifically, we consider the ability of the likelihood to diagnose conjugacy or independence between the signals and noises. Our work was motivated by the analysis of data from high-throughput experiments in genomics. The proposed model leads to a more flexible family. However, we further demonstrate that adequately capitalizing on the benefits of a well fitting fully-specified likelihood in the terms of gene ranking is difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most microarray technologies, a number of critical steps are required to convert raw intensity measurements into the data relied upon by data analysts, biologists and clinicians. These data manipulations, referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years, the high-throughput measurement of gene expression is the most popular application of microarray technology. For this application, various groups have demonstrated that the use of modern statistical methodology can substantially improve accuracy and precision of gene expression measurements, relative to ad-hoc procedures introduced by designers and manufacturers of the technology. Currently, other applications of microarrays are becoming more and more popular. In this paper we describe a preprocessing methodology for a technology designed for the identification of DNA sequence variants in specific genes or regions of the human genome that are associated with phenotypes of interest such as disease. In particular we describe methodology useful for preprocessing Affymetrix SNP chips and obtaining genotype calls with the preprocessed data. We demonstrate how our procedure improves existing approaches using data from three relatively large studies including one in which large number independent calls are available. Software implementing these ideas are avialble from the Bioconductor oligo package.