884 resultados para Data Streams Distribution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avec les nouvelles technologies des réseaux optiques, une quantité de données de plus en plus grande peut être transportée par une seule longueur d'onde. Cette quantité peut atteindre jusqu’à 40 gigabits par seconde (Gbps). Les flots de données individuels quant à eux demandent beaucoup moins de bande passante. Le groupage de trafic est une technique qui permet l'utilisation efficace de la bande passante offerte par une longueur d'onde. Elle consiste à assembler plusieurs flots de données de bas débit en une seule entité de données qui peut être transporté sur une longueur d'onde. La technique demultiplexage en longueurs d'onde (Wavelength Division Multiplexing WDM) permet de transporter plusieurs longueurs d'onde sur une même fibre. L'utilisation des deux techniques : WDM et groupage de trafic, permet de transporter une quantité de données de l'ordre de terabits par seconde (Tbps) sur une même fibre optique. La protection du trafic dans les réseaux optiques devient alors une opération très vitale pour ces réseaux, puisqu'une seule panne peut perturber des milliers d'utilisateurs et engendre des pertes importantes jusqu'à plusieurs millions de dollars à l'opérateur et aux utilisateurs du réseau. La technique de protection consiste à réserver une capacité supplémentaire pour acheminer le trafic en cas de panne dans le réseau. Cette thèse porte sur l'étude des techniques de groupage et de protection du trafic en utilisant les p-cycles dans les réseaux optiques dans un contexte de trafic dynamique. La majorité des travaux existants considère un trafic statique où l'état du réseau ainsi que le trafic sont donnés au début et ne changent pas. En plus, la majorité de ces travaux utilise des heuristiques ou des méthodes ayant de la difficulté à résoudre des instances de grande taille. Dans le contexte de trafic dynamique, deux difficultés majeures s'ajoutent aux problèmes étudiés, à cause du changement continuel du trafic dans le réseau. La première est due au fait que la solution proposée à la période précédente, même si elle est optimisée, n'est plus nécessairement optimisée ou optimale pour la période courante, une nouvelle optimisation de la solution au problème est alors nécessaire. La deuxième difficulté est due au fait que la résolution du problème pour une période donnée est différente de sa résolution pour la période initiale à cause des connexions en cours dans le réseau qui ne doivent pas être trop dérangées à chaque période de temps. L'étude faite sur la technique de groupage de trafic dans un contexte de trafic dynamique consiste à proposer différents scénarios pour composer avec ce type de trafic, avec comme objectif la maximisation de la bande passante des connexions acceptées à chaque période de temps. Des formulations mathématiques des différents scénarios considérés pour le problème de groupage sont proposées. Les travaux que nous avons réalisés sur le problème de la protection considèrent deux types de p-cycles, ceux protégeant les liens (p-cycles de base) et les FIPP p-cycles (p-cycles protégeant les chemins). Ces travaux ont consisté d’abord en la proposition de différents scénarios pour gérer les p-cycles de protection dans un contexte de trafic dynamique. Ensuite, une étude sur la stabilité des p-cycles dans un contexte de trafic dynamique a été faite. Des formulations de différents scénarios ont été proposées et les méthodes de résolution utilisées permettent d’aborder des problèmes de plus grande taille que ceux présentés dans la littérature. Nous nous appuyons sur la méthode de génération de colonnes pour énumérer implicitement les cycles les plus prometteurs. Dans l'étude des p-cycles protégeant les chemins ou FIPP p-cycles, nous avons proposé des formulations pour le problème maître et le problème auxiliaire. Nous avons utilisé une méthode de décomposition hiérarchique du problème qui nous permet d'obtenir de meilleurs résultats dans un temps raisonnable. Comme pour les p-cycles de base, nous avons étudié la stabilité des FIPP p-cycles dans un contexte de trafic dynamique. Les travaux montrent que dépendamment du critère d'optimisation, les p-cycles de base (protégeant les liens) et les FIPP p-cycles (protégeant les chemins) peuvent être très stables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The average availability of a repairable system is the expected proportion of time that the system is operating in the interval [0, t]. The present article discusses the nonparametric estimation of the average availability when (i) the data on 'n' complete cycles of system operation are available, (ii) the data are subject to right censorship, and (iii) the process is observed upto a specified time 'T'. In each case, a nonparametric confidence interval for the average availability is also constructed. Simulations are conducted to assess the performance of the estimators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative structure activity relationships (QSARs) have been developed to optimise the choice of nitrogen heterocyclic molecules that can be used to separate the minor actinides such as americium(III) from europium(III) in the aqueous PUREX raffinate of nuclear waste. Experimental data on distribution coefficients and separation factors (SFs) for 47 such ligands have been obtained and show SF values ranging from 0.61 to 100. The ligands were divided into a training set of 36 molecules to develop the QSAR and a test set of 11 molecules to validate the QSAR. Over 1500 molecular descriptors were calculated for each heterocycle and the Genetic Algorithm was used to select the most appropriate for use in multiple regression equations. Equations were developed fitting the separation factors to 6-8 molecular descriptors which gave r(2) values of >0.8 for the training set and values of >0.7 for the test set, thus showing good predictive quality. The descriptors used in the equations were primarily electronic and steric. These equations can be used to predict the separation factors of nitrogen heterocycles not yet synthesised and/or tested and hence obtain the most efficient ligands for lanthanide and actinide separation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sea surface temperature (SST) measurements are required by operational ocean and atmospheric forecasting systems to constrain modeled upper ocean circulation and thermal structure. The Global Ocean Data Assimilation Experiment (GODAE) High Resolution SST Pilot Project (GHRSST-PP) was initiated to address these needs by coordinating the provision of accurate, high-resolution, SST products for the global domain. The pilot project is now complete, but activities continue within the Group for High Resolution SST (GHRSST). The pilot project focused on harmonizing diverse satellite and in situ data streams that were indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework implemented in an internationally distributed manner. Data with meaningful error estimates developed within GHRSST are provided by services within R/GTS. Currently, several terabytes of data are processed at international centers daily, creating more than 25 gigabytes of product. Ensemble SST analyses together with anomaly SST outputs are generated each day, providing confidence in SST analyses via diagnostic outputs. Diagnostic data sets are generated and Web interfaces are provided to monitor the quality of observation and analysis products. GHRSST research and development projects continue to tackle problems of instrument calibration, algorithm development, diurnal variability, skin temperature deviation, and validation/verification of GHRSST products. GHRSST also works closely with applications and users, providing a forum for discussion and feedback between SST users and producers on a regular basis. All data within the GHRSST R/GTS framework are freely available. This paper reviews the progress of GHRSST-PP, highlighting achievements that have been fundamental to the success of the pilot project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our digital universe is rapidly expanding,more and more daily activities are digitally recorded, data arrives in streams, it needs to be analyzed in real time and may evolve over time. In the last decade many adaptive learning algorithms and prediction systems, which can automatically update themselves with the new incoming data, have been developed. The majority of those algorithms focus on improving the predictive performance and assume that model update is always desired as soon as possible and as frequently as possible. In this study we consider potential model update as an investment decision, which, as in the financial markets, should be taken only if a certain return on investment is expected. We introduce and motivate a new research problem for data streams ? cost-sensitive adaptation. We propose a reference framework for analyzing adaptation strategies in terms of costs and benefits. Our framework allows to characterize and decompose the costs of model updates, and to asses and interpret the gains in performance due to model adaptation for a given learning algorithm on a given prediction task. Our proof-of-concept experiment demonstrates how the framework can aid in analyzing and managing adaptation decisions in the chemical industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trachoma is a disease known thousand years ago and still as a potential blindness disease all over the world. The authors call attention to the factors related with the transmission, present historical data and distribution of the disease in Brazil and in the world, comment on the agent, the signs and symptoms of this chronic conjunctivitis. Still, reinforce the need to enable professionals for the diagnosis, detection and treatment. The reflection of these attitudes will be the contribution to the elimination of this important disease as a blindness cause among us.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zeitreihen sind allgegenwärtig. Die Erfassung und Verarbeitung kontinuierlich gemessener Daten ist in allen Bereichen der Naturwissenschaften, Medizin und Finanzwelt vertreten. Das enorme Anwachsen aufgezeichneter Datenmengen, sei es durch automatisierte Monitoring-Systeme oder integrierte Sensoren, bedarf außerordentlich schneller Algorithmen in Theorie und Praxis. Infolgedessen beschäftigt sich diese Arbeit mit der effizienten Berechnung von Teilsequenzalignments. Komplexe Algorithmen wie z.B. Anomaliedetektion, Motivfabfrage oder die unüberwachte Extraktion von prototypischen Bausteinen in Zeitreihen machen exzessiven Gebrauch von diesen Alignments. Darin begründet sich der Bedarf nach schnellen Implementierungen. Diese Arbeit untergliedert sich in drei Ansätze, die sich dieser Herausforderung widmen. Das umfasst vier Alignierungsalgorithmen und ihre Parallelisierung auf CUDA-fähiger Hardware, einen Algorithmus zur Segmentierung von Datenströmen und eine einheitliche Behandlung von Liegruppen-wertigen Zeitreihen.rnrnDer erste Beitrag ist eine vollständige CUDA-Portierung der UCR-Suite, die weltführende Implementierung von Teilsequenzalignierung. Das umfasst ein neues Berechnungsschema zur Ermittlung lokaler Alignierungsgüten unter Verwendung z-normierten euklidischen Abstands, welches auf jeder parallelen Hardware mit Unterstützung für schnelle Fouriertransformation einsetzbar ist. Des Weiteren geben wir eine SIMT-verträgliche Umsetzung der Lower-Bound-Kaskade der UCR-Suite zur effizienten Berechnung lokaler Alignierungsgüten unter Dynamic Time Warping an. Beide CUDA-Implementierungen ermöglichen eine um ein bis zwei Größenordnungen schnellere Berechnung als etablierte Methoden.rnrnAls zweites untersuchen wir zwei Linearzeit-Approximierungen für das elastische Alignment von Teilsequenzen. Auf der einen Seite behandeln wir ein SIMT-verträgliches Relaxierungschema für Greedy DTW und seine effiziente CUDA-Parallelisierung. Auf der anderen Seite führen wir ein neues lokales Abstandsmaß ein, den Gliding Elastic Match (GEM), welches mit der gleichen asymptotischen Zeitkomplexität wie Greedy DTW berechnet werden kann, jedoch eine vollständige Relaxierung der Penalty-Matrix bietet. Weitere Verbesserungen umfassen Invarianz gegen Trends auf der Messachse und uniforme Skalierung auf der Zeitachse. Des Weiteren wird eine Erweiterung von GEM zur Multi-Shape-Segmentierung diskutiert und auf Bewegungsdaten evaluiert. Beide CUDA-Parallelisierung verzeichnen Laufzeitverbesserungen um bis zu zwei Größenordnungen.rnrnDie Behandlung von Zeitreihen beschränkt sich in der Literatur in der Regel auf reellwertige Messdaten. Der dritte Beitrag umfasst eine einheitliche Methode zur Behandlung von Liegruppen-wertigen Zeitreihen. Darauf aufbauend werden Distanzmaße auf der Rotationsgruppe SO(3) und auf der euklidischen Gruppe SE(3) behandelt. Des Weiteren werden speichereffiziente Darstellungen und gruppenkompatible Erweiterungen elastischer Maße diskutiert.