922 resultados para Data Streams Distribution


Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62H10.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amphibian is an 10’00’’ musical work which explores new musical interfaces and approaches to hybridising performance practices from the popular music, electronic dance music and computer music traditions. The work is designed to be presented in a range of contexts associated with the electro-acoustic, popular and classical music traditions. The work is for two performers using two synchronised laptops, an electric guitar and a custom designed gestural interface for vocal performers - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate the voice in real time through the capture of physical gestures via an array of sensors - pressure, distance, tilt - along with ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone. In this work, data is also exchanged between performers via a local wireless network, allowing performers to work with shared data streams. The duo employs the gestural conventions of guitarist and singer (i.e. 'a band' in a popular music context), but transform these sounds and gestures into new digital music. The gestural language of popular music is deliberately subverted and taken into a new context. The piece thus explores the nexus between the sonic and performative practices of electro acoustic music and intelligent electronic dance music (‘idm’). This work was situated in the research fields of new musical interfacing, interaction design, experimental music composition and performance. The contexts in which the research was conducted were live musical performance and studio music production. The work investigated new methods for musical interfacing, performance data mapping, hybrid performance and compositional practices in electronic music. The research methodology was practice-led. New insights were gained from the iterative experimental workshopping of gestural inputs, musical data mapping, inter-performer data exchange, software patch design, data and audio processing chains. In respect of interfacing, there were innovations in the design and implementation of a novel sensor-based gestural interface for singers, the e-Mic, one of the only existing gestural controllers for singers. This work explored the compositional potential of sharing real time performance data between performers and deployed novel methods for inter-performer data exchange and mapping. As regards stylistic and performance innovation, the work explored and demonstrated an approach to the hybridisation of the gestural and sonic language of popular music with recent ‘post-digital’ approaches to laptop based experimental music The development of the work was supported by an Australia Council Grant. Research findings have been disseminated via a range of international conference publications, recordings, radio interviews (ABC Classic FM), broadcasts, and performances at international events and festivals. The work was curated into the major Australian international festival, Liquid Architecture, and was selected by an international music jury (through blind peer review) for presentation at the International Computer Music Conference in Belfast, N. Ireland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUVs) are becoming commonplace in the study of inshore coastal marine habitats. Combined with shipboard systems, scientists are able to make in-situ measurements of water column and benthic properties. In CSIRO, autonomous gliders are used to collect water column data, while surface vessels are used to collect bathymetry information through the use of swath mapping, bottom grabs, and towed video systems. Although these methods have provided good data coverage for coastal and deep waters beyond 50m, there has been an increasing need for autonomous in-situ sampling in waters less than 50m deep. In addition, the collection of benthic and water column data has been conducted separately, requiring extensive post-processing to combine data streams. As such, a new AUV was developed for in-situ observations of both benthic habitat and water column properties in shallow waters. This paper provides an overview of the Starbug X AUV system, its operational characteristics including vision-based navigation and oceanographic sensor integration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes the design and implementation of a situation awareness application. The application gathers data from sensors including accelerometers for monitoring earthquakes, carbon monoxide sensors for monitoring fires, radiation detectors, and dust sensors. The application also gathers Internet data sources including data about traffic congestion on daily commute routes, information about hazards, news relevant to the user of the application, and weather. The application sends the data to a Cloud computing service which aggregates data streams from multiple sites and detects anomalies. Information from the Cloud service is then displayed by the application on a tablet, computer monitor, or television screen. The situation awareness application enables almost all members of a community to remain aware of critical changes in their environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo desta dissertação é avaliar o desempenho de ambientes virtuais de roteamento construídos sobre máquinas x86 e dispositivos de rede existentes na Internet atual. Entre as plataformas de virtualização mais utilizadas, deseja-se identificar quem melhor atende aos requisitos de um ambiente virtual de roteamento para permitir a programação do núcleo de redes de produção. As plataformas de virtualização Xen e KVM foram instaladas em servidores x86 modernos de grande capacidade, e comparadas quanto a eficiência, flexibilidade e capacidade de isolamento entre as redes, que são os requisitos para o bom desempenho de uma rede virtual. Os resultados obtidos nos testes mostram que, apesar de ser uma plataforma de virtualização completa, o KVM possui desempenho melhor que o do Xen no encaminhamento e roteamento de pacotes, quando o VIRTIO é utilizado. Além disso, apenas o Xen apresentou problemas de isolamento entre redes virtuais. Também avaliamos o efeito da arquitetura NUMA, muito comum em servidores x86 modernos, sobre o desempenho das VMs quando muita memória e núcleos de processamento são alocados nelas. A análise dos resultados mostra que o desempenho das operações de Entrada e Saída (E/S) de rede pode ser comprometido, caso as quantidades de memória e CPU virtuais alocadas para a VM não respeitem o tamanho dos nós NUMA existentes no hardware. Por último, estudamos o OpenFlow. Ele permite que redes sejam segmentadas em roteadores, comutadores e em máquinas x86 para que ambientes virtuais de roteamento com lógicas de encaminhamento diferentes possam ser criados. Verificamos que ao ser instalado com o Xen e com o KVM, ele possibilita a migração de redes virtuais entre diferentes nós físicos, sem que ocorram interrupções nos fluxos de dados, além de permitir que o desempenho do encaminhamento de pacotes nas redes virtuais criadas seja aumentado. Assim, foi possível programar o núcleo da rede para implementar alternativas ao protocolo IP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compilation of all the available information on the main small pelagic fish resources of Mozambican waters is presented. Resource data on distribution areas, reproduction, age, growth and stock size are described. Actual catch and catch per unit of effort of the commercially exploited stocks are also given. Results of the preliminary assessment of the stocks of scad and mackerel and the problems involving the assessment of Kelee shad stock at Maputo Bay are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compilation of all the available information on the main small pelagic fish resources of Mozambican waters is presented. Resource data on distribution areas, reproduction, age, growth and stock size are described. Actual catch and catch per unit of effort of the commercially exploited stocks are also given. Results of the preliminary assessment of the stocks of scad and mackerel and the problems involving the assessment of Kelee shad stock at Maputo Bay are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From 1977 to 1980, several research cruises were carried out in the coastal waters of Mozambique to collect oceanographic data. The distribution of hydrographic and bathythermograph stations is given. The water masses and circulation were mapped and wind data gathered.