784 resultados para DUAL-CURED COMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (μTBS) and microshear bond strength (μSBS) tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0)C/24 h) specimens were stressed (0.5 mm/min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the following acrylic resins: Clássico®, QC-20® and Lucitone®, recommended specifically for thermal polymerization, and Acron MC® and VIPI-WAVE®, made for polymerization by microwave energy. The resins were evaluated regarding their surface nanohardness and modulus of elasticity, while varying the polymerization time recommended by the manufacturer. They were also compared as to the presence of water absorbed by the samples. The technique used was nanoindentation, using the Nano Indenter XP®, MTS. According to an intra-group analysis, when using the polymerization time recommended by the manufacturer, a variation of 0.14 to 0.23 GPa for nanohardness and 2.61 to 3.73 GPa for modulus of elasticity was observed for the thermally polymerized resins. The variation for the resins made for polymerization by microwave energy was 0.15 to 0.22 GPa for nanohardness and 2.94 to 3.73 GPa for modulus of elasticity. The conclusion was that the Classico® resin presented higher nanohardness and higher modulus of elasticity values when compared to those of the same group, while Acron MC® presented the highest values for the same characteristics when compared to those of the same group. The water absorption evaluation showed that all the thermal polymerization resins, except for Lucitone®, presented significant nanohardness differences when submitted to dehydration or rehydration, while only Acron MC® presented no significant differences when submitted to a double polymerization time. Regarding the modulus of elasticity, it was observed that all the tested materials and products, except for Lucitone®, showed a significant increase in modulus of elasticity when submitted to a lack of hydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the flexural strength (σf) and hardness (H) of direct and indirect composites, testing the hypotheses that direct resin composites produce higher σf and H values than indirect composites and that these properties are positively related. Ten bar-shaped specimens (25 mm x 2 mm x 2 mm) were fabricated for each direct [D250 - Filtek Z250 (3M-Espe) and D350 - Filtek Z350 (3M-Espe)] and indirect [ISin - Sinfony (3M-Espe) and IVM - VitaVM LC (Vita Zahnfabrik)] materials, according to the manufacturer's instructions and ISO4049 specifications. The σf was tested in three-point bending using a universal testing machine (EMIC DL 2000) at a crosshead speed of 0.5 mm/min (ISO4049). Knoop hardness (H) was measured on the specimens' fragments resultant from the σf test and calculated as H = 14.2P/l², where P is the applied load (0.1 kg; dwell time = 15 s) and l is the longest diagonal of the diamond shaped indent (ASTM E384). The data were statistically analyzed using Anova and Tukey tests (α = 0.05). The mean σf and standard deviation values (MPa) and statistical grouping were: D250 - 135.4 ± 17.6a; D350 - 123.7 ± 11.1b; ISin - 98.4 ± 6.4c; IVM - 73.1 ± 4.9d. The mean H and standard deviation values (kg/mm²) and statistical grouping were: D250 - 98.12 ± 1.8a; D350 - 86.5 ± 1.9b; ISin - 28.3 ± 0.9c; IVM - 30.8 ± 1.0c. The direct composite systems examined produce higher mean σf and H values than the indirect composites, and the mean values of these properties were positively correlated (r = 0.91), confirming the study hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to verify the influence of an experimental heat treatment (170ºC/10 min) using a casting furnace on the mechanical properties (hardness and flexural strength) of 2 commercial direct resin composites (TPH Spectrum and Filtek P60) compared to a commercial indirect resin system (BelleGlass). Heat treatment temperature was determined after thermal characterization by thermogravimetry (TG) and differential scanning calorimetry (DSC). Data was analyzed by ANOVA and Tukey's test at 5% significance level. There was statistical significance for the main factor heat treatment (p=0.03) and composite (p=0.02), for flexural strength. For Knoop hardness, only the main factor composite was statistically significant (p=0.00). P60 presented higher hardness than TPH. No statistically significant correlation between mechanical properties tested was detected. Based on these results, it was possible to conclude that heat treatment influenced flexural strength of direct composites, while it was not observed for hardness. The association of direct composites with a simple post-cure heat treatment may be an alternative for current indirect composite systems, although more studies are needed to verify other properties of the composites for this application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraprecision diamond turning was used to evaluate the surface integrity of a carbon nanotube (CNT) composite as a function of the cutting conditions and the percentage of CNT in the epoxy matrix. The effects of cutting conditions on the chip morphology and surface roughness were analysed. The results showed that an increase in the percentage of CNT may influence the mechanism of material removal and consequently improve the quality of the machined surface. When smaller quantities of CNT (0.02 and 0.07 wt %) are present in the matrix, microcracks form within the cutting grooves (perpendicular to the cutting direction). This indicates that the amount of CNT on the epoxy matrix may have a direct influence on the mechanical properties of these materials. Chips removed from the CNT composite samples were analysed by scanning electron microscopy in order to correlate the material removal mechanism and the surface generation process. The area average surface roughness Sa was influenced by the material removal mechanism (Sa ranging from 0.28 to 1.1 mu m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the electronic transport properties of a dual-gated bilayer graphene nanodevice via first-principles calculations. We investigate the electric current as a function of gate length and temperature. Under the action of an external electrical field we show that even for gate lengths up 100 angstrom, a nonzero current is exhibited. The results can be explained by the presence of a tunneling regime due the remanescent states in the gap. We also discuss the conditions to reach the charge neutrality point in a system free of defects and extrinsic carrier doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performing two tasks simultaneously often degrades performance of one or both tasks. While this dual-task interference is classically interpreted in terms of shared attentional resources, where two motor tasks are performed simultaneously interactions within primary motor cortex (i.e., activity-dependent coupling) may also be a contributing factor. In the present study TMS (transcranial magnetic stimulation) was used to examine the contribution of activity-dependent coupling to dual-task interference during concurrent performance of a bimanual coordination task and a discrete probe reaction time (RT) task involving the foot. Experiments 1 and 2 revealed that activity-dependent coupling within the leg corticomotor pathway was greater during dual-task performance than single-task performance, and this was associated with interference on the probe RT task (i.e., increased RT). Experiment 3 revealed that dual-task interference occurred regardless of whether the dual-task involved two motor tasks or a motor and cognitive task, however activity-dependent coupling was present only when a dual motor task was performed. This suggests that activity-dependent coupling is less detrimental to performance than attentional processes operating upstream of the corticomotor system. Finally, while prioritising the RT task reduced, but did not eliminate, dual-task interference the contribution of activity-dependent coupling to dual-task interference was not affected by task prioritisation. This suggests that although activity-dependent coupling may contribute to dual motor-task interference, attentional processes appear to be more important. It also suggests that activity-dependent coupling may not be subject to modulation by attentional processes. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were prodUced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO(2)center dot nH(2)O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO(2)center dot nH(2)O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPF/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young`s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix Caused all increase of defects, which were reduced When modified cellulose fibers were Used. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element homogenization method for a shear actuated d(15) macro-fibre composite (MFC) made of seven layers (Kapton, acrylic, electrode, piezoceramic fibre and epoxy composite, electrode, acrylic, Kapton) is proposed and used for the characterization of its effective material properties. The methodology is first validated for the MFC active layer only, made of piezoceramic fibre and epoxy, through comparison with previously published analytical results. Then, the methodology is applied to the seven-layer MFC. It is shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. However, it is found that the piezoelectric charge constant d(15) is less affected by the softer layers required by the MFC packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.