588 resultados para DIHYDRONICOTINAMIDE ADENINE-DINUCLEOTIDE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We previously described the presence of nicotinamide adenine dinucleotide phosphate reduced form [NAD(P)H] oxidase components in pancreatic beta-cells and its activation by glucose, palmitic acid, and proinflammatory cytokines. In the present study, the importance of the NAD(P)H oxidase complex for pancreatic beta-cell function was examined. Rat pancreatic islets were incubated in the presence of glucose plus diphenyleneiodonium, a NAD(P)H oxidase inhibitor, for 1 h or with the antisense oligonucleotide for p47(PHOX) during 24 h. Reactive oxygen species (ROS) production was determined by a fluorescence assay using 2,7-dichlorodihydrofluorescein diacetate. Insulin secretion, intracellular calcium responses, [U-(14)C] glucose oxidation, and expression of glucose transporter-2, glucokinase and insulin genes were examined. Antisense oligonucleotide reduced p47(PHOX) expression [an important NAD(P)H oxidase cytosolic subunit] and similarly to diphenyleneiodonium also blunted the enzyme activity as indicated by reduction of ROS production. Suppression of NAD(P)H oxidase activity had an inhibitory effect on intracellular calcium responses to glucose and glucose-stimulated insulin secretion by isolated islets. NAD(P)H oxidase inhibition also reduced glucose oxidation and gene expression of glucose transporter-2 and glucokinase. These findings indicate that NAD(P)H oxidase activation plays an important role for ROS production by pancreatic beta-cells during glucose-stimulated insulin secretion. The importance of this enzyme complex for the beta-cell metabolism and the machinery involved in insulin secretion were also shown. (Endocrinology 150: 2197-2201, 2009)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. Methods: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-(14)C] glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91(phox) and p47(phox) was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. Results: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47(phox) and gp91(phox) subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. Conclusions: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES To test the hypothesis that glyco protein 91phox (gp91(phox)) subunit of nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase is a fundamental target for physical activity to ameliorate erectile dysfunction (ED). Vascular risk factors are reported to contribute to ED. Regular physical exercise prevents cardiovascular diseases by increasing nitric oxide (NO) production and/or decreasing NO inactivation. METHODS Male Wistar rats received the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks, after which animals were submitted to a run training program for another 4 weeks. Erectile functions were evaluated by in vitro cavernosal relaxations and intracavernous pressure measurements. Expressions of gp91(phox) subunit and neuronal nitric oxidase synthase in erectile tissue, as well as superoxide dismutase activity and nitrite/nitrate (NO(x)) levels were determined. RESULTS The in vitro acetylcholine-and electrical field stimulation-induced cavernosal relaxations, as well as the increases in intracavernous pressure were markedly reduced in sedentary rats treated with L-NAME. Run training significantly restored the impaired cavernosal relaxations. No alterations in the neuronal nitric oxidase synthase protein expression (and its variant penile neuronal nitric oxidase synthase) were detected. A reduction of NO(x) levels and superoxide dismutase activity was observed in L-NAME-treated animals, which was significantly reversed by physical training. Gene expression of subunit gp91(phox) was enhanced by approximately 2-fold in erectile tissue of L-NAME-treated rats, and that was restored to basal levels by run training. CONCLUSIONS Our study shows that ED seen after long-term L-NAME treatment is associated with gp91(phox) subunit upregulation and decreased NO bioavailability. Exercise training reverses the increased oxidative stress in NO-deficient rats, ameliorating the ED. UROLOGY 75: 961-967, 2010. (C) 2009 Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigated the functional role of nuclear factor-kappa B (NF-kappa B) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappa B (IKB alpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorderof NF-kappa B function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91 degrees CGD). NCF1 gene expression in EDA-ID S321 cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47 degrees) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappa B site 5` to the CYBB gene in U937 cells treated with NF-kappa B inhibitors, repressor-transfected U937 cells, and EDA-ID patients cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappa B repressor. These studies show that NF-kappa B is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biosynthesis of quinolinate, the de novo precursor of nicotinamide adenine dinucleotide (NAD), may be performed by two distinct pathways, namely, the bacterial aspartate (aspartate-to-quinolinate) and the eukaryotic kynurenine (tryptophan-to-quinolinate). Even though the separation into eukaryotic and bacterial routes is long established, recent genomic surveys have challenged this view, because certain bacterial species also carry the genes for the kynurenine pathway. In this work, both quinolinate biosynthetic pathways were investigated in the Bacteria clade and with special attention to Xanthomonadales and Bacteroidetes, from an evolutionary viewpoint. Genomic screening has revealed that a small number of bacterial species possess some of the genes for the kynurenine pathway, which is complete in the genus Xanthomonas and in the order Flavobacteriales, where the aspartate pathway is absent. The opposite pattern (presence of the aspartate pathway and absence of the kynurenine pathway) in close relatives (Xylella ssp. and the order Bacteroidales, respectively) points to the idea of a recent acquisition of the kynurenine pathway through lateral gene transfer in these bacterial groups. In fact, sequence similarity comparison and phylogenetic reconstruction both suggest that at least part of the genes of the kynurenine pathway in Xanthomonas and Flavobacteriales is shared by eukaryotes. These results reinforce the idea of the role that lateral gene transfer plays in the configuration of bacterial genomes, thereby providing alternative metabolic pathways, even with the replacement of primary and essential cell functions, as exemplified by NAD biosynthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Serum amyloid A (SAA) levels are elevated highly in acute phase response and elevated slightly and persistently in chronic diseases such as rheumatoid arthritis and diabetes. Given that fibroblasts exert profound effects on progression of inflammatory chronic diseases, the aim of this study was to investigate the response of fibroblasts to SAA. A dose-dependent increase in O(2)(-) levels was observed by treatment of fibroblasts with SAA (r = 0.99 and P <= 0.001). In addition, the expression of p47-phox was up-regulated by SAA (P < 0.001) and diphenyliodonium (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, reduced the release of O(2)(-) by 50%. Also, SAA raised fibroblast proliferation (P < 0.001) and this effect was completely abolished by the addition of anti-oxidants (P < 0.001). These findings support the notion that, in chronic inflammatory sites, SAA activated fibroblast proliferation and ROS production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352 +/- 21 and 272 +/- 25 mu M, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1 degrees C and pH 8.6. Above 37 degrees C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n reptiles, accumulating evidence suggests that nitric oxide (NO) induces a potent relaxation in the systemic vasculature. However, very few studies have examined the source from which NO is derived. Therefore, the present study used both anatomical and physiological approaches to establish whether NO-mediated vasodilation is via an endothelial or neural NO pathway in the large arteries of the estuarine crocodile Crocodylus porosus. Specific endothelial nitric oxide synthase (NOS) staining was observed in aortic endothelial cells following nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and endothelial NOS immunohistochemistry (IHC), suggesting that an endothelial NO pathway is involved in vascular control. This finding was supported by in vitro organ bath physiology, which demonstrated that the relaxation induced by acetylcholine (10-5 mol l-1) was abolished in the presence of the NOS inhibitor, N-omega-nitro-L-arginine (L-NNA; 10-4 mol l-1), the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10-5 mol l-1), or when the endothelium was removed. Interestingly, evidence for a neural NO pathway was also identified in large arteries of the crocodile. Neural NOS was located in perivascular nerves of the major blood vessels following NADPH-d histochemistry and neural NOS IHC and in isolated aortic rings, L-NNA and ODQ, but not the removal of the endothelium, abolished the relaxation effect of the neural NOS agonist, nicotine (3x10-4 mol l-1). Thus, we conclude that the large arteries of C. porosus are potentially regulated by NO-derived from both endothelial and neural NOS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)).Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pollen allergy has been found in 80–90% of childhood asthmatics and 40–50% of adult-onset asthmatics. Despite the high prevalence of atopy in asthmatics, a causal relationship between the allergic response and asthma has not been clearly established. Pollen grains are too large to penetrate the small airways where asthma occurs. Yet pollen cytoplasmic fragments are respirable and are likely correlated with the asthmatic response in allergic asthmatics. In this review, we outline the mechanism of pollen fragmentation and possible pathophysiology of pollen fragment-induced asthma. Pollen grains rupture within the male flowers and emit cytoplasmic debris when winds or other disturbances disperse the pollen. Peak levels of grass and birch pollen allergens in the atmosphere correlated with the occurrence of moist weather conditions during the flowering period. Thunderstorm asthma epidemics may be triggered by grass pollen rupture in the atmosphere and the entrainment of respirable-sized particles in the outflows of air masses at ground level. Pollen contains nicotinamide adenine dinucleotide phosphate (reduced) oxidases and bioactive lipid mediators which likely contribute to the inflammatory response. Several studies have examined synergistic effects and enhanced immune response from interaction in the atmosphere, or from co-deposition in the airways, of pollen allergens, endogenous pro-inflammatory agents, and the particulate and gaseous fraction of combustion products. Pollen and fungal fragments also contain compounds that can suppress reactive oxidants and quench free radicals. It is important to know more about how these substances interact to potentially enhance, or even ameliorate, allergic asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Immobilization of catechol derivatives on GC electrode surfaces can be performed by in situ generation and reduction of nitrocatechol. We present the oxidative nitration of catechol in the presence of nitrous acid followed by electrochemically reduction of the generated nitro aromatic group to the corresponding amine group and its conversion to diazonium cation at the electrode surface to yield a surface covalently modified with catechol. In this manner, some derivatives of catechol can be immobilized on the electrode surface. Whole of the process is carried out in Triethylammonium acetate ionic liquid as an inert and neutral medium (pH∼7.0). Surface coverage can be easily controlled by the applied potential, time and concentration of catechol. After modification, the electrochemical features of modified surface have been studied. Also modified GC electrode exhibited remarkable catalytic activity in the oxidation of NADH. The catalytic currents were proportional to the concentration of NADH over the range 0.01-0.80 mM. This condition can be used for modification of GC surfaces by various aromatic molecules for different application such as design of sensors and biosensors. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carcaças bovinas resfriadas rapidamente podem apresentar uma contração muscular conhecida como encurtamento pelo frio. Esse fenômeno, prejudicial à textura da carne, ocorre principalmente nas fibras musculares oxidativas. O objetivo deste trabalho foi disponibilizar uma ferramenta analítica para distinguir essas fibras e determinar com maior precisão a contração do tecido muscular pela mensuração do comprimento dos sarcômeros. Amostras do músculo Longissimus dorsi de 12 novilhas nelore foram coletadas. As amostras obtidas de uma das meias-carcaças foram submetidas a uma refrigeração rápida, e as amostras provenientes da outra meia-carcaça à refrigeração lenta. Foi testado um método analítico, baseado na técnica de coloração por Nicotinamida Adenina Dinucleotídeo - Tetrazolium Redutase (NADH-TR), para mensurar, por microscopia, o comprimento dos sarcômeros das fibras vermelhas. Foram determinadas as velocidades de queda de pH e temperatura, a área do olho de lombo (AOL) e a força de cisalhamento. Os resultados demonstraram que a temperatura é o principal fator responsável pelo comprimento do sarcômero quando a velocidade de resfriamento é rápida, sendo essa influência menor quando a queda de temperatura é mais lenta. Desta forma, demonstrou-se que a técnica de coloração com NADH-TR é capaz de detectar a ocorrência do encurtamento pelo frio nos músculos esqueléticos de bovinos.