940 resultados para DIET-INDUCED OBESITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Obese adults are prone to develop metabolic and cardiovascular diseases. Furthermore, over-weight expectant mothers give birth to large babies who also have increased likelihood of developing metabolic and cardiovascular diseases. Fundamental advancements to better understand the pathophysiology of obesity are critical in the development of anti-obesity therapies not only for this but also future generations. Skeletal muscle plays a major role in fat metabolism and much work has focused in promoting this activity in order to control the development of obesity. Research has evaluated myostatin inhibition as a strategy to prevent the development of obesity and concluded in some cases that it offers a protective mechanism against a high-fat diet. Results: We hypothesised that myostatin inhibition should protect not only the mother but also its developing foetus from the detrimental effects of a high-fat diet. Unexpectedly, we found muscle development was attenuated in the foetus of myostatin null mice raised on a high-fat diet. We therefore re-examined the effect of the high-fat diet on adults and found myostatin null mice were more susceptible to diet-induced obesity through a mechanism involving impairment of inter-organ fat utilization. Conclusions: Loss of myostatin alters fatty acid uptake and oxidation in skeletal muscle and liver. We show that abnormally high metabolic activity of fat in myostatin null mice is decreased by a high-fat diet resulting in excessive adipose deposition and lipotoxicity. Collectively, our genetic loss-of-function studies offer an explanation of the lean phenotype displayed by a host of animals lacking myostatin signalling. Keywords: Muscle, Obesity, High-fat diet, Metabolism, Myostatin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renin–angiotensin system (RAS) is functional within adipose tissue and angiotensin II, the active component of RAS, has been implicated in adipose tissue hypertrophy and insulin resistance. In this study, captopril, an angiotensin converting enzyme (ACE) inhibitor that prevents angiotensin II formation, was used to study the development of diet-induced obesity and insulin resistance in obesity prone C57BL/6J mice. The mice were fed a high fat diet (w/w 21% fat) and allowed access to either water or water with captopril added (0.2 mg/ml). Body weight was recorded weekly and water and food intake daily. Glucose tolerance was determined after 11–12 weeks. On completion of the study (after 16 weeks of treatment), the mice were killed and kidney, liver, epididymal fat and extensor digitorum longus muscle (EDL) were weighed. Blood samples were collected and plasma analysed for metabolites and hormones. Captopril treatment decreased body weight in the first 2 weeks of treatment. Food intake of captopril-treated mice was similar to control mice prior to weight loss and was decreased after weight loss. Glucose tolerance was improved in captopril-treated mice. Captopril-treated mice had less epididymal fat than control mice. Relative to body weight, captopril-treated mice had increased EDL weight. Relative to control mice, mice administered captopril had a higher plasma concentration of adiponectin and lower concentrations of leptin and non-esterified fatty acids (NEFA). The results indicate that captopril both induced weight loss and improved insulin sensitivity. Thus, captopril may eventually be used for the treatment of obesity and Type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to determine the classification error probabilities, as lean or obese, in hypercaloric diet-induced obesity, which depends on the variable used to characterize animal obesity. In addition, the misclassification probabilities in animals submitted to normocaloric diet were also evaluated. Male Wistar rats were randomly distributed into two groups: normal diet (ND; n=3 1; 3,5 Kcal/g) and hypercaloric diet (HD; n=31; 4,6 Kcal/g). The ND group received commercial Labina rat feed and HD animals a cycle of five hypercaloric diets for a 14-week period. The variables analysed were body weight, body composition, body weight to length ratio, Lee index, body mass index and misclassification probability A 5% significance level was used. The hypercaloric pellet-diet cycle promoted increase of body weight, carcass fat, body weight to length ratio and Lee index. The total misclassification probabilities ranged from 19.21 % to 40.91 %. In Conclusion, the results of this experiment show that rnisclassification probabilities Occur when dietary manipulation is used to promote obesity in animals. This misjudgement ranges from 19.49% to 40.52% in hypercaloric diet and 18.94% to 41.30% in normocaloric diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Given the established fact that obesity interferes with male reproductive functions, the present study aimed to evaluate sperm production in the testis and storage in the epididymis in a glutamate-induced model of obesity. Methods: Male rats were treated neonatally with monosodium glutamate (MSG) at doses of 4 mg/kg subcutaneously, or with saline solution (control group), on postnatal days 2, 4, 6, 8 and 10. On day 120, obesity was confirmed by the Lee index in all MSG-treated rats. After this, all animals from the two experimental groups were anesthetized and killed to evaluate body and reproductive organ weights, sperm parameters, plasma hormone levels (FSH, LH and testosterone), testicular and epididymal histo-morphometry and histopathology. Results: Significant reductions in absolute and relative weights of testis, epididymis, prostate and seminal vesicle were noted in MSG-treated animals. In these same animals plasma testosterone and follicle-stimulating hormone (FSH) concentrations were decreased, as well as sperm counts in the testis and epididymis and seminiferous epithelium height and tubular diameter. The sperm transit time was accelerated in obese rats. However, the number of Sertoli cells per seminiferous tubule and stereological findings on the epididymis were not markedly changed by obesity. Conclusions: Neonatal MSG-administered model of obesity lowers sperm production and leads to a reduction in sperm storage in the epididymis of adult male rats. The acceleration of sperm transit time can have implications for the sperm quality of these rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.