986 resultados para DEGENERATE ELECTRONIC STATES
Resumo:
The theory of dipole-allowed absorption intensities in triatomic molecules is presented for systems with three close-lying electronic states of doublet multiplicity. Its derivation is within the framework of a recently developed variational method [CARTER, S., HANDY, N. C., PUZZARINI, C., TARRONI, R., and PALMIERI, P., 2000, Molec. Phys., 98,1967]. The method has been applied to the calculation of the infrared absorption spectrum of the C2H radical and its deuterated isotopomer for energies up to 10000 cm(-1) above the ground state, using highly accurate ab initio diabatic potential energy and dipole moment surfaces. The calculated spectra agree very well with those recorded experimentally in a neon matrix [FORNEY, D., JACOX, M. E., and THOMPSON, W. E., 1995, J. molee. Spectrosc., 170, 178] and assignments in the high energy region of the IR spectra are proposed for the first time.
Resumo:
The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.
Resumo:
The solvatochromism and other spectroscopic and photophysical characteristics of four azo disperse dyes, derived from 2-amino-5-nitrothiazole, were evaluated and interpreted with the aid of experimental data and quantum mechanical calculations. For the non-substituted compound two conformers, E and Z, were proposed for the isolated molecules, being the second one considerably less stable. The optimization of these structures in combination with a SCRF methodology (IEFPCM, Simulating the molecules in a continuum dielectric with characteristics of methanol), suggests that the Z form is not stable in solution. This same behaviour is expected for the substituted compounds, which is corroborated by experimental data presented in previous investigations [A.E.H. Machado, L.M. Rodrigues, S. Gupta, A.M.F. Oliveira-Campos, A.M.S. Silva, J. Mol. Struct. 738 (2005) 239-245]. For the substituted compounds, two forms derived from E conformer (A and R) are possible. Quantum mechanical data suggest for the isolated molecules, that the low energy absorption hand of the E conformers involve at least two close electronic states. having the low-lying excited state a (1)(n,pi*) nature, and being the S-2 state attributed to a (1)(pi,pi*) transition. The data also suggest a small energy gap between the absorption peaks of A and B, related to the easy conversion between these forms. For the structures optimized in combination with the applied SCRF methodology, an states inversion is observed for the Substituted compounds, with a considerable diminish of the energy gap between A and B absorption peaks. The electronic spectra of these compounds are quite sensitive to changes in the solvent polarity. The positive solvatochromism is more evident in aprotic solvents, probably due to the polarization induced by the solute. These compounds do not fluoresce at 298 K, but present a small but perceptible fluorescence at 77 K, which seems to be favoured by the nature of the group in the 2 `-position of the phenyl ring. Moreover, such compounds present expressive values for first hyperpolarizability, which implies in good non-linear optics (NLO) responses and photoswitching capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Photochemical and photophysical properties of 1-(2-quinolyl)-2-naphthol (2QN) in water and organic solvents, as well in glassy media were studied to investigate the occurrence of intramolecular excited state prototropic reactions between the naphthol and quinoline rings. Spectral data show the two chromophores apparently behaving independently. However, in acid aqueous media or in low polarity solvents a new electronic transition red shifted band with respect to that of the parent compounds assigned to an intramolecular H-bond and to a quinoid form, respectively, shows up. Model calculations and R-X data lend support to a minimum energy conformer having a dihedral angle of similar to 39 degrees between the two groups. Singlet excited state properties (S-1) show a high suppressive effect of one ring over the other, resulting in very low emission yields at room temperature. The occurrence of excited state intramolecular proton transfer is observed in water (zwitter ion form) and in low polarity media (quinoid form) and originates from a previously CT H-bonded state. Phosphorescence data allowed a reasonable description of the electronic states of 2QN. In addition two new derivatives were prepared having the N atom blocked by methylation and both the N and O groups blocked by a CH2 bridge. The spectral data of these two compounds confirmed the attributions made for 2QN. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The diazocarbene radical, CNN, and the ions CNN(+) and CNN(-) were investigated at a high level of theory. Very accurate structural parameters for the states X(3)Sigma(-) and A(3)Pi of CNN, and X(2)Pi of both CNN(+) and CNN(-) were obtained with the UCCSD(T) method using correlated-consistent basis functions with extrapolations to the complete basis set limit, with valence only and also with all electrons correlated. Harmonic and anharmonic frequencies were obtained for all species and the Renner parameter and average frequencies evaluated for the Pi states. At the UCCSD(T)/CBS(T-5) level of theory, Delta(f)H(0 K) = 138.89 kcal/mol and Delta(f)H(298 K) = 139.65 kcal/mol were obtained for diazocarbene; for the ionization potential and the electron affinity of CNN, 10.969 eV (252.95 kcal/mol), and 1.743 eV (40.19 kcal/mol), respectively, are predicted. Geometry optimization was also carried out with the CASSCF/MRCI/CBS(T-5) approach for the states X(3)Sigma(-) A(3)Pi, and a(1)Delta of CNN, and with the CASSCF/MRSDCI/aug-cc-pVTZ approach for the states b(1)Sigma(+), c(1)Pi, d(1)Sigma(-), and B(3)Sigma(-), and excitation energies (T(e)) evaluated. Vertical energies were calculated for 15 electronic states, thus improving on the accuracy of the five transitions already described, and allowing for a reliable overview of a manifold of other states, which is expected to guide future spectroscopic experiments. This study corroborates the experimental assignment for the vertical transition X (3)Sigma(-) <- E (3)Pi.
Bichromophoric behavior of nitrophenyl-triazene anions: a resonance Raman spectroscopy investigation
Resumo:
Highly delocalized molecular frameworks with intense charge transfer transitions, known as push-pull systems, are of central interest in many areas of chemistry, as is the case of nitrophenyl-triazene derivatives. The 1,3-bis(2-nitrophenyl)triazene and 1,3-bis(4-nitrophenyl)triazene were investigated by electronic (UV-Vis) and resonance Raman (RR) spectroscopies. The bichromophoric behavior of 1,3-bis(4-nitrophenyl)triazene anion opens the possibility of tuning with visible radiation, two distinct electronic states. The RR profiles of nitrophenyl-triazene derivatives clearly show that the first allowed electronic state can be assigned to a charge transfer from the ring pi system to the NO2 moiety (ca 520 nm), while the second, as a charge transfer from N-3(-) to the aromatic ring (ca 390 nm). In the para-substituted derivative, a more efficient electron transfer and a greater energy separation between the two excited states are observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.
Resumo:
The complex reaction between VO2+ ((1)A(1)/(3)A) and C2H4 (Ag-1(g)/(3)A(1)) to yield VO+ ((1)Delta/(3)Sigma) and CH3CHO ('A'/(3)A) has been studied by means of B3LYP/6-31G* and B3LYP/6-311G(2d,p) calculations. The structures of all reactants, products, intermediates, and transition structures of this reaction have been optimized and characterized at the fundamental singlet and first excited triplet electronic states. Crossing points are localized, and possible spin inversion processes are discussed by means of the intrinsic reaction coordinate approach. Relevant stationary points along the most favorable reaction pathways have been studied at the CCSD/6-311G(2d,p)//B3LYP/6-311G(2d,p) calculation level. The theoretical results allow the development of thermodynamic and kinetic arguments about the reaction pathways of the title process. In the singlet state, the first step is the barrierless obtention of a reactant complex associated with the formation of a V-C bond, while in the triplet state a three-membered ring addition complex with the V bonded to the two C atoms is obtained. Similar behavior is found in the exit channels: the product complexes can be formed from isolated products without barriers. The reactant and product complexes are the most stable stationary points in the singlet and triplet electronic states. From the singlet state reactant complex, two reaction pathways are posssible to reach the triplet state product complex. (i) A mechanism in which a hydrogen transfer process is the first and rate limiting step and the second step is an oxygen transfer between vanadium and carbon atoms with a concomitant change in the spin state. The crossing point between singlet and triplet spin states is not kinetically relevant because it takes place at a later stage occurring in the exit channel. (ii) A mechanism in which the first stage renders a four-membered ring between vanadyl cation and the ethylene fragment and an oxygencarbon bond is formed; on going from this minimum to the second transition structure, associated with a carbon-vanadium bond breaking process, the crossing point between singlet and triplet spin states is reached. The final step is the hydrogen transfer between both carbon atoms to yield the product complex. In this case the spin change opens a lower barrier pathway. The transition structures with larger values of relative energies for both reactive channels of VO2+ ((1)A(1)) + C2H4 (Ag-1) --> VO+ ((3)Sigma) + CH3CHO ((1)A') present similar energies, and the two reaction pathways can be considered as competitive.
Resumo:
The potential energy surfaces at the singlet (s) and the triplet (t) electronic states associated with the gas-phase ion/molecule reactions of NbO3-, NbO5-, and NbO2(OH)(2)(-) with H2O and O-2 have been investigated by means of DFT calculations at the B3LYP level. An analysis of the results points out that the most favorable reactive channel comprises s-NbO3- reacting with H2O to give an ion-molecule complex s-NbO3(H2O)without a barrier. From this minima, an intramolecular hydrogen transfer takes place between the incoming water molecule and an oxygen atom of the NbO3- fragment to render the most stable minimum, s-NbO2(OH)(2)(-). This oxyhydroxide system reacts with O-2 along a barrierless process to obtain the triplet t-NbO4(OH)(2)(-)-A intermediate, and the crossing point, CP1, between s and t electronic states has been characterized. The next step is the hydrogen-transfer process between the oxygen atom of a hydroxyl group and the one adjacent oxygen atom to render a minimum with the two OH groups near each other, t-NbO4(OH)(2)(-)-B. From this point, the last hydrogen migration takes place, to obtain the product complex, t-NbO5(H2O)(-), that can be connected with the singlet separated products, s-NbO5- and H2O. Therefore, a second crossing point, CP2, has been localized. The nature of the chemical bonding of the key minima (NbO3-, NbO2(OH)(2)(-), NbO4(OH)(2)(-)-B, and NbO5-) in both electronic states of the reaction and an interaction with O-2 has been studied by topological analysis of Becke-Edgecombe electron-localization function (ELF) and atoms-in-molecules (AIM) methodology. The niobium-oxygen interactions are characterized as unshared-electron (ionic) interactions and some oxygen-oxygen interactions as protocovalent bonds.
Resumo:
The A (2)Sigma(+) and X(2)Pi electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrodinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A(2)Sigma(+)-X(2)Pi system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A(2)Sigma(+) state, taking into account the spin-orbit diagonal correction to the X(2)Pi state, decrease from a value of 138 ms at v' = 0 to 0.48 ms at v' = 8, and, for the X(2)Pi state, from 2.32 s at v = 1 to 0.59 s at v = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
In this work we show that, beyond the prediction of the random dimer model [Wu and Phillips, Phys. Rev. Lett. 66, 1366 (1991)], it is possible to have near resonant scattering from nonsymmetric dimers. It is shown by direct density of states calculations as well as by a procedure similar to the random dimer model that protonated chains of alkyl-substituted polyanilines support extended electronic states at the Fermi energy when a disordered distribution of symmetric or asymmetric bipolarons is present. An extension of the random dimer model to include resonant scattering by nonsymmetric dimers is proposed.
Resumo:
Calculations based on density functional theory have been carried out to investigate the free energy profiles at singlet and triplet electronic states associated with the gas-phase ion/molecule reactions of VO2++ ((1)A(1)/(3)A) with propene. The complex potential energy Surfaces, including Six reaction pathways (three dehydrogenation and three oxygen transfer processes), have been explored and analyzed. Along dehydrogenation reactive channels, three final products can be obtained: V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) and allene (path Dehl), being the most kinetically and thermodynamically favorable reaction pathway, V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) and propyne (path Deh2),and VO2+ ((1)A(1)/(3)A) and H-2 plus allene (path Deh3). The oxyoenation processes can yield its final products Vo(+) ((1)Delta/(3)Sigma) and acetone (path Ox1), VO+ ((1)Delta/(3)Sigma 2) and propanaldehyde (path Ox2), and VO+ ((1)Delta/(3)Sigma) and H-2 and propenaldehyde (path Ox3). Both paths Deh1 and Deh2 are associated with two consecutive hydrogen transfer processes from carbon atoms of the propene fragment to vanadyl oxygen atoms, while in path Deh3 the second hydrogen migration takes place to the vanadiurn atorn followed by the formation ola hydrogen molecule. Both paths Ox1 and Ox2 comprise an intramolecular hydrogen transfer between the ethylenic moiety of the propene fragment, while two consecutive hydrogen transfer processes take place from the propene fragment to oxygen and vanadium atoms of the vanadyl moiety along path Ox3. Three crossing points between both electronic states take place along path Deh1 (CP-Deh1) and path Deh2 (CP-Deh2) and in the entrance channel of oxidation processes (CP-Ox). A comparison with previous works on related reactions VO2+ + C2H4, VO2 + C2H6, and VO2+ + C3H8 allows us to rationalize the different reactivity patterns.
Resumo:
The molecular mechanisms of the reaction VO2+ ((1)A(1)/(3)A'') + C2H6 ((1)A(g)) to yield V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) + C2H4 ((1)A(g)) and/or VO+ ((1)Delta/(3)Sigma) + H2O ((1)A(1)) + C2H4 (Ag-1) have been investigated with density functional theory (DFT) at the B3LYP/6-311G(2d,p) level. Calculations including geometry optimization, vibrational analysis, and Gibbs free energy for the stationary points on the reactive potential energy surfaces at both the singlet (s) and first excited triplet (t) electronic states have been carried out. The most thermodynamically and kinetically favorable pathway is the formation of t-V(OH)(2)(+) + C2H4 along a four-step molecular mechanism (insertion, two consecutive hydrogen transfers, and elimination). A crossing point between s and t electronic states has been characterized. A comparison with previous works on VO2+ + C2H4 (Gracia et al. J. Phys. Chem. A 2003, 107, 3107-3120) and VO2+ + C3H8 (Engeser et al. Organometallics 2003, 22, 3933-3943) reactions allows us a rationalization of the different reactivity patterns. The catalytic role of water molecules in the tautomerization process between hydrated oxide cation, VO(H2O)(+,) and dihydroxide cation, V(OH)(2)(+), is achieved by a water-assisted mechanism.
Resumo:
In this work a new europium (III) complex with the following formula NH(4) [Eu(bmdm)(4)] was synthesized and characterized. The bmdm (butyl methoxy-dibenzoyl-methane) is a P-diketone molecule used as UV radiation absorber in sunscreen formulations. Coordination of this ligand to the Eu(3+) ion was confinned by FT-IR, while the Raman spectrum suggests the presence of NH(4)(+) ions. The photoluminescence spectra present narrow lines arising from f-f intra-configurational transitions (5)D(0-)(7)F(0,1,2,3,4), dominated by the hypersensitive (5)D(0)-(7)F(2) transition. In the spectrum recorded at 77 K, all transitions split into 2J + 1 lines suggesting that there is just one symmetry site around Eu(3+) ion. This symmetry is not centrosymmetric. The calculated intensity parameters are ohm(2) = 30.5 x 10(-20) cm(2) and ohm(4) = 5.91 x 10(-20) cm(2) for this complex. The CIE chromaticity coordinates (x = 0.67 and y = 0.32) show a dominant wavelength of 615 nm. The color gamut achieved by this complex is a 100% in the CIE color space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.