995 resultados para DC electrical conductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The procedure adopted by the Standard Seawater Service for the calibration of Standard Seawater in electrical conductivity relative to a defined potassium chloride solution is described

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the measurements of conductivity, I-V curve, and magnetoresistance of a single Au/polyaniline microfiber with a core-shell structure, on which a pair of platinum microleads was attached by focused ion beam. The Au/polyaniline microfiber shows a much higher conductivity (similar to 110 S/cm at 300 K) and a much weaker temperature dependence of resistance [R(4 K)/R(300 K)=5.1] as compared with those of a single polyaniline microtube [sigma(RT)=30-40 S/cm and R(4 K)/R(300 K)=16.2]. The power-law dependence of R(T)proportional to T-beta, with beta=0.38, indicates that the measured Au/polyaniline microfiber is lying in the critical regime of the metal-insulator transition. In addition, the microfiber shows a H-2 dependent positive magnetoresistance at 2, 4, and 6 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New series of oxides, La3MMo2O12 (M = In, Ga and Al), have been prepared by the solid-state reaction. The composition and elemental distribution were analyzed by the energy-dispersive X-ray (EDX) analysis. As determined by the X-ray diffraction (XRD), these compounds have similar crystal structures that can be indexed on a monoclinic cell at room temperature. AC impedance spectra and the DC electrical conductivity measurements in various atmospheres indicate that they are oxide ion conductors with ionic conductivities between 10(-2) and 10(-3) S/cm at 800 degrees C. The conductivity decreases in the order of La3GaMo2O12 > La3AlMo2O12 > La3InMo2O12, implying that the effect of cell volume and polarization associated with In3+, Ga3+ and Al3+ play an important role in the anion transport of these materials. The reversible phase transition was observed in all these compounds as confirmed by the differential thermal analysis (DTA) and dilatometric measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal influence on the electrical conductivity of polyimide film surfaces induced by KrF-laser irradiation was investigated, The formation of conducting phases was demonstrated to be highly temperature sensitive, as evidenced by strong dependence of the electrical conductivity on repetition rate and ambient temperature. XPS and Raman studies showed that the efficiency of the formation of conducting phases could be enhanced by the increase of temperature on irradiated polyimide film surfaces. After the disruption of polymeric chain, the carbon-enriched clusters remained on the irradiated polyimide film surfaces organized into polycrystalline graphite-like clusters responsible for electrical conductivity. The resulting dangling bonds from the decomposition process of polyimide acted as centers for the rearrangement of carbon-enriched clusters. It is suggested that the motion of radicals was promoted with increasing the temperature. Therefore the formation of polycrystalline graphite-like clusters benefited from high remaining temperature on the irradiated polyimide film surfaces. These results revealed that thermal influence played a dominant role on the formation of conducting phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conductivity mechanism for a carbon black (CB) filled high-density polyethylene (HDPE) compound was investigated in this work. From the experimental results obtained, it can be seen that the relation between electrical current density (J) and applied voltage across the sample (V) coincides with Simmons's equation (i.e., the electrical resistivity of the compound decreases with the applied voltage, especially at the critical voltage). The minimum electrical resistivity occurs near the glass transition temperature (T-g) of HDPE (198 K). It can be concluded that electron tunneling is an important mechanism and a dominant transport process in the HDPE/CB composite. A new model of carbon black dispersion in the matrix was established, and the resistivity was calculated by using percolation and quantum mechanical theories. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic specimens of MoS2 are obtained by pressing the microcrystalline powder into special die. This inelastic compression results in a rearrangement of the disulfide micro platelets observed by Atomic Force Microscopy and reflected in the macroscopic anisotropy in electrical conductivity in these samples. The conductivity measured parallel and perpendicular to the direction of applied pressure exhibits an anisotropy factor of ∼10 at 1 GPa. This behaviour of the conductivity as a function of applied pressure is explained as the result of the simultaneous influence of a rearrangement of the micro platelets in the solid and the change of the inter-grain distances.