967 resultados para D1 DOPAMINE RECEPTOR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.

In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-π interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-π interaction with dopamine.

Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.

Chapter 4 identifies a cation-π interaction between glutamate and a tyrosine residue on loop C in the GluClβ receptor. Using the recently published crystal structure of the homologous GluClα receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.

Chapter 5 examines inherent properties of the GluClα receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crianças de mães fumantes são mais suscetíveis a se tornarem adultos obesos e se viciarem em drogas ou alimentos palatáveis. Drogas e alimentos ativam a via mesolímbica de recompensa, causando sensação de prazer que induz ainda mais o consumo. Assim, avaliamos a relação entre a exposição apenas à nicotina ou à fumaça do cigarro durante a lactação com a preferência alimentar e sistema dopaminérgico de recompensa cerebral das proles, em dois modelos de programação: Modelo I: no 2o dia pós-natal (PN), lactantes receberam implante de minibombas osmóticas que liberam nicotina (NIC) ou salina (C), durante 14 dias. Em PN150 e novamente em PN160, as proles foram divididas em 4 grupos para um desafio alimentar: N-SC e C-SC que receberam ração padrão; N-SSD e C-SSD que podiam escolher livremente entre as dietas hiperlipídica e hiperglicídica. A ingestão alimentar foi avaliada após 12 h. As mães foram sacrificadas apenas na 21 da lactação (desmame) e as proles em PN15 (com nicotina), PN21 e PN170 (ausência da NIC). Ao desmame, as ratas lactantes NIC apresentaram menor conteúdo de tirosina hidroxilase (TH), maior OBRb e SOCS3 na area tegmentar ventral (VTA); menor TH, maior receptor de dopamina 1 (D1R), receptor de dopamina 2 (D2R) e transportador de dopamina (DAT) no núcleo accumbens (NAc); maior conteúdo de TH no estriado dorsal (DS); e maior D2R e SOCS3 no núcleo arqueado (ARC). Em PN15, os filhotes NIC apresentaram maior conteúdo de D1R, D2R e menor DAT no NAc, enquanto em PN21, apresentaram apenas menor DAT no DS, e menor conteúdo de pSTAT3 em ARC. Aos 170 dias, as proles SSD demonstraram maior preferência para a ração hiperlipídica. No entanto, os animais N-SSD consumiram mais ração hiperglicidica do que as proles C-SSD. A prole N apresentou menor conteúdo de D2R e DAT no NAc e menor D2R no ARC. Modelo II: as mães e suas proles foram divididas em: expostos à fumaça do cigarro (grupo S: 4 vezes / dia, do 3 ao 21 dia de lactação), e expostos ao ar filtrado (grupo C). Em PN175, as proles foram divididas em 4 grupos para o desafio alimentar S-SC, C-SC, S-SSD e C-SSD. A ingestão alimentar foi avaliada após 30 min e 12 h. Em PN180, as proles foram sacrificadas. O grupo S-SSD ingeriu mais das rações palatáveis do que o grupo C-SSD em 30 min e 12 h. Ambos os grupos preferiram a ração hiperlipídica. No entanto, os animais S-SSD consumiram mais ração hiperlipídica do que C-SSD em 30 min. A prole S apresentou menor conteúdo de TH no VTA, menor conteúdo de TH, D2R e maior conteúdo de D1R no NAc e menor OBRb no ARC. Demonstramos que tanto a nicotina isolada como a exposição à fumaça do cigarro durante a lactação resultaram em mudanças no sistema dopaminérgico das proles, programando o comportamento alimentar devido à diminuição da dopamina no NAc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human D2 dopamine receptor gene (DRD2) plays a central role in the neuromodulation of appetitive behaviors and is implicated in having a possible role in susceptibility to alcoholism. We genotyped an SNP in DRD2 Exon 8 in 251 nonalcoholic, unrelated, healthy controls and 200 alcoholic Mexican Americans. The DRD2 haplotypes were analyzed using the Exon 8 genotype in combination with five other SNP genotypes, which were obtained from our previous study. The ancestral origins of the DRD2 polymorphisms have been determined by sequencing the homologous region in other higher primates. Twenty DRD2 haplotypes, defined as H1 to H20 based on their frequency from high to low, were obtained in this major minority population. The ancestral haplotype "I-132-G-C-G-A1" and two one-step mutation haplotypes were absent in our study population. The haplotype H1, "I-B1-T-C-A-A1", with the highest frequency in the population, is a three-step mutation from the ancestral form. The first five or eight major haplotypes make up 87% or 95% of the entire population, respectively. The prevalence of the haplotype H1+ (H1/H1 and H1/Hn genotypes) is significantly higher in alcoholics and alcoholic subgroups, including early onset drinkers and benders, than in their respective control groups. The Promoter -141C allele is in linkage disequilibrium (LD) with five other loci in the nonalcoholic group, but not in the alcoholic group. All of the other five loci are in LD in both the alcoholic and control groups. The DRD2 TaqI B allele is in complete LD with the allele located in intron 6. Five SNPs, Promoter -141C, TaqI B (or Intron 6), Exon 7, Exon 8, and TaqI A, are sufficient to define the DRD2 haplotypes in Mexican Americans. Our data indicate that the DRD2 haplotypes are associated with alcoholism in Mexican Americans. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The activities/properties of two molecules with identical formula but different configuration states of the asymmetric atoms are different. Thus, usually the common topological indices are not suitable. In this study, the chiral topological indices were obtained by extending A(mi) indices suggested by our laboratory and molecular connectivity indices. The modified topologial indices have been used for the studies on D2 for dopamine receptor and a receptor activities of fourteen N-alkylated 3-(3-hydroxypyenyl)-piperidines. It has been observed that selected variables possess low correlations. The results obtained by using multiple regression analysis and artificial neural networks are satisfactory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA methylation is a key epigenetic mechanism involved in the developmental regulation of gene expression. Alterations in DNA methylation are established contributors to inter-individual phenotypic variation and have been associated with disease susceptibility. The degree to which changes in loci-specific DNA methylation are under the influence of heritable and environmental factors is largely unknown. In this study, we quantitatively measured DNA methylation across the promoter regions of the dopamine receptor 4 gene (DRD4), the serotonin transporter gene (SLC6A4/SERT) and the X-linked monoamine oxidase A gene (MAOA) using DNA sampled at both ages 5 and 10 years in 46 MZ twin-pairs and 45 DZ twin-pairs (total n=182). Our data suggest that DNA methylation differences are apparent already in early childhood, even between genetically identical individuals, and that individual differences in methylation are not stable over time. Our longitudinal-developmental study suggests that environmental influences are important factors accounting for interindividual DNA methylation differences, and that these influences differ across the genome. The observation of dynamic changes in DNA methylation over time highlights the importance of longitudinal research designs for epigenetic research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to identify receptors that mediate reflex mydriasis in pentobarbital-anesthetized rabbits, in which the cervical sympathetic nerve was sectioned unilaterally. Voltage-response curves of pupillary dilation were generated bilaterally by stimulation of the sciatic nerve. Evoked mydriatic responses were mediated mainly by efferent parasympathetic innervation, and, to a lesser extent, by sympathetic innervation. The a-adrenergic antagonist, phenoxybenzamine (0.3 mg/kg, intravenously (i.v.)), antagonized mydriasis of the neurally intact eye, but not that on the sympathectomized side. The a- adrenergic antagonist, RS 79948 (0.3 mg/kg, i.v.), potentiated mydriasis of the normal eye, but was without either a potentiating or inhibitory effect on the mydriasis of the sympathectomized eye. In addition, the dopamine-receptor antagonist, haloperidol (1 mg/kg, i.v.), inhibited evoked mydriasis of the sympathectomized eye. These results suggest that, unlike some other species (cats and rats), a-adrenoceptors do not mediate reflex mydriasis elicited by sciatic-nerve stimulation in the rabbit, and support the previous finding in humans that dopamine receptors may mediate this response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifty kHz rat vocalizations are theorized to reflect a positive affective state, and index the reward value of stimuli (Knutson, Burgdorf & Panksepp, 2002; Panksepp & Burgdorf, 2003; Brudzynski,2005). Previous studies have identified the neurochemical substrate of this behaviour to be dependent on dopaminergic activity at the nucleus accumbens shell (Burgdorf, Knutson, Panksepp & Ikemoto, 2001; Thompson, Leonard & Brudzynski, 2006). The utilization of d-amphetamine (a non-selective dopamine agonist) in these studies does not address the specific dopamine receptor types involved. The present study aims to identify the role of the D2- like family of receptors in the nucleus accumbens shell in the production of 50 kHz vocalizations in adult rats. Single injections of quinpirole in a saline vehicle were administered to the nucleus accumbens shell of 57 rats, and the number of 50 kHz vocalizations were recorded. An inverted V-shaped relationship was found between quinpirole dose (0.5 ~g, 3 ~g, 6 ~g, 1 0 ~g and 20 ~g, all in 0.2~1 saline) and the mean number of 50 kHz calls produced. Quinpirole successfully elicited significantly more 50 kHz calls than did a saline control at the 6 ~g dose, as did 7 ~g/0.2 ~l of d-amphetamine injections into the same brain site. To test whether a selective D2 antagonist could reverse elicited 50 kHz calling, double injections were given that used either saline or raclopride as a pretreatment before quinpirole injections. Saline followed by 6 ~g/0.2 ~l of quinpirole elicited significantly more 50 kHz vocalizations than did a double injection of saline, while pretreatment with an equimolar dose of raclopride reduced elicited calls to control levels. Raclopride was also used as a pretreatment of 7 ~g/0.2 ~l d-amphetamine, which elicited significantly fewer 50 kHz vocalizations than saline followed by amphetamine, replicating the finding of Thompson, Leonard & Brudzynski (2006).Subcutaneous injections of 0.5 mg/kg and 1.5 mg/kg of quinpirole produced a similar number of 50 kHz vocalizations as subcutaneous injection of saline. Wider dose ranges may be explored in fiiture research. Thus, direct activation of the Da-like receptors in the nucleus accumbens shell was sufficient to elicit 50 kHz vocalizations in adult rats, an effect which was reversed with selective local antagonism of Da-like receptors. The Da-like receptor family also appears necessary for pharmacological activation of 50 kHz calling, as d-amphetamine was no longer able to effectively elicit these vocalizations from the nucleus accumbens shell when the Da-receptor family was antagonized with raclopride. The acoustic parameters of elicited vocalizations remained typical of rat 50 kHz calls. Detailed analyses of the acoustic characteristics of elicited calls indicated significant increases in call duration and peak frequency across drug injection groups, particularly among quinpirole dose groups. The implications of these findings are not yet clear, but may represent an important direction for future research into the coding of semiotic content into affective signals in rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rats emit two distinct types of ultrasonic vocalizations in adulthood: 22 kHz (aversive situation), and 50 kHz calls (appetitive situation). The present project is focussed on pharmacological studies of 50 kHz vocalizations. The 50 kHz calls are elicited from dopaminergic activation in the meso limbic pathway and are emitted in such appetitive situations as social contact(s), sexual encounters, food reward, etc. Eighty-five male rats were stereotaxically implanted with bilateral guide cannulae in the nucleus accumbens shell (A= 9.7, L= 1.2, V= 6.7). Quinpirole, a D2/D3 dopaminergic agonist, was injected in low doses to the nucleus accumbens shell in an attempt to elicit 50 kHz vocalizations. A dose response was obtained for the low dose range of quinpirole for six doses: 0.025 Jlg, 0.06 Jlg, 0.12 Jlg, 0.25 Jlg, 0.5 Jlg, and 1.0 Jlg. It was found that only application of the 0.25 Jlg dose of quinpirole and the 7 Jlg dose of amphetamine (positive control) significantly increased the total number of 50 kHz calls (p < 0.006 and p < 0.004 respectively); and particularly significantly increased the frequency modulated type of these calls (p < 0.01, and p < 0.006 respectively). In a double injection procedure, the dose of 0.25 Jlg quinpirole was antagonized with raclopride (D2 antagonist) or U99194A maleate (D3 antagonist) in an attempt to antagonize the response. The 0.25 Jlg dose of quinpirole was successfully antagonized by pre-treatment with an equimolar dose of U99194A maleate (p < 0.008) but not with raclopride. The 7Jlg amphetamine response was also antagonized with an equimolar dose of raclopride. Based on these results, it seems that low doses of quinpirole, particularly the 0.25 Jlg dose, are capable of increasing 50 kHz vocalizations in rats and do so by activation of the D3 dopamine receptor. This is not a biphasic response as seen with locomotor studies. Also noteworthy is the increase in frequency modulated 50 kHz calls elicited by the 0.25 Jlg dose of quinpirole indicating a possible increase in positive affect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The developmental remodelling of motivational systems that underlie drug dependence and addiction may account for the greater frequency and severity of drug abuse in adolescence compared to adulthood. Recent advances in animal models have begun to identify the morphological and the molecular factors that are being remodelled, but little is known about the culmination of these factors in altered sensitivity to psycho stimulant drugs, like amphetamine, in adolescence. Amphetamine induces potent locomotor activating effects in rodents through increased dopamine release in the mesocorticolimbic dopamine system, which makes locomotor activity a useful behavioural marker of age differences in amphetamine sensitivity. The aim of the thesis was to investigate the neural basis for age differences in amphetamine sensitivity with a focus on the nucleus accumbens and the medial prefrontal cortex, which initiate and regulate amphetamine-induced locomotor activity, respectively. In study 1, I found pre- and post- pubertal adolescent rats to be less active (i.e., hypoactive) than adults to a first injection of 0.5, but not of 1.5, mg/kg of intraperitonealy (i.p.) administered amphetamine. Although initially hypoactive, only adolescent rats exhibited an increase in activity to a second injection of amphetamine given 24 h later, indicating that adolescents may be more sensitive to the rapid changes in amphetamineinduced plasticity than adults. Given that the locomotor activating effects of amphetamine are initiated in the nucleus accumbens, age differences in response to direct injections of amphetamine into this brain region were investigated in study 2. In contrast to i.p. injections, adolescents were more active than adults when amphetamine was given directly into the nucleus accumbens, indicating that hypo activity may be attributed to the development of regulatory regions outside of the accumbens. The medial prefrontal cortex (mPFC) is a key regulator of the locomotor activating effects of amphetamine that undergoes extensive remodelling in adolescence. In study 3, I found that an i.p. injection of 1.5, and not of 0.5, mg/kg of amphetamine resulted in a high expression of c-fos, a marker of neural activation, in the pre limbic mPFC only in pre-pubertal adolescent rats. This finding suggests that the ability of adolescent rats to overcome hypo activity at the 1.5 mg/kg dose may involve greater activation of the prelimbic mPFC compared to adulthood. In support of this hypothesis, I found that pharmacological inhibition of prelimbic D 1 dopamine receptors disrupted the locomotor activating effects of the 1.5 mg/kg dose of amphetamine to a greater extent in adolescent than in adult rats. In addition, the stimulation of prelimbic D 1 dopamine receptors potentiated locomotor activity at the 0.5 mg/kg dose of amphetamine only in adolescent rats, indicating that the prelimbic D1 dopamine receptors are involved in overcoming locomotor hypoactivity during adolescence. Given my finding that the locomotor activating effects of amphetamine rely on slightly different mechanisms in adolescence than in adulthood, study 4 was designed to determine whether the lasting consequences of drug use would also differ with age. A short period of pre-treatment with 0.5 mg/kg of amphetamine in adolescence, but not in adulthood, resulted in heightened sensitivity to an injection of amphetamine given 30 days after the start of the procedure, when adolescent rats had reached adulthood. The finding of an age-specific increase in amphetamine sensitivity is consistent with evidence for increased risk for addiction when drug use is initiated in adolescence compared to adulthood in people (Merline et aI., 2002), and with the hypothesis that adolescence is a sensitive period of development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanisms of action of several atypical antipsychotic drugs have been examined at the D-2 dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D-2 dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D-2 dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agonist efficacy is a measure of how well an agonist can stimulate a response system linked to a receptor. Efficacy can be assessed in functional assays and various parameters (E-max, K-A/EC50, E-max center dot K-A/EC50) determined. The E-max center dot K-A/EC50 parameter provides a good estimate of efficacy across the full range of efficacy. A convenient assay for the efficacy of agonists for some receptors is provided by the [S-35]GTP[S] (guanosine 5'-[gamma-[S-35]thio]triphosphate)-binding assay. in this assay, the normal GTP-binding event in GPCR (G-protein-coupled receptor) activation is replaced by the binding of the non-hydrolysable analogue [S-35]GTP[S]. This assay may be used to profile ligands for their efficacy, and an example here is the D-2 dopamine receptor where an efficacy scale has been set up using this assay. The mechanisms underlying the assay have been probed. The time course of [S-35]GTP[S] binding follows a pseudo-first-order reaction with [S-35]GTP[S] binding reaching equilibrium after approx. 3 h. The [S-35]GTP[S]-binding event is the rate-deter mining step in the assay. Agonists regulate the maximal level of [S-35]GTP[S] bound, rather than the rate constant for binding. The [S-35]GTP[S]-binding assay therefore determines agonist efficacy on the basis of the amount of [S-35]GTP[S] bound rather than the rate of binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Huntington disease ( HD) is characterized by the progressive death of medium spiny dopamine receptor bearing striatal GABAergic neurons. In addition, microglial activation in the areas of neuronal loss has recently been described in postmortem studies. Activated microglia are known to release neurotoxic cytokines, and these may contribute to the pathologic process. Methods: To evaluate in vivo the involvement of microglia activation in HD, the authors studied patients at different stages of the disease using [ C-11]( R)-PK11195 PET, a marker of microglia activation, and [ C-11] raclopride PET, a marker of dopamine D2 receptor binding and hence striatal GABAergic cell function. Results: In HD patients, a significant increase in striatal [ C-11]( R)-PK11195 binding was observed, which significantly correlated with disease severity as reflected by the striatal reduction in [ C-11] raclopride binding, the Unified Huntington's Disease Rating Scale score, and the patients' CAG index. Also detected were significant increases in microglia activation in cortical regions including prefrontal cortex and anterior cingulate. Conclusions: These [ C-11]( R)-PK11195 PET findings show that the level of microglial activation correlates with Huntington disease ( HD) severity. They lend support to the view that microglia contribute to the ongoing neuronal degeneration in HD and indicate that [ C-11]( R)-PK11195 PET provides a valuable marker when monitoring the efficacy of putative neuroprotecting agents in this relentlessly progressive genetic disorder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rationale: Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. Objectives: This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Results: Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Conclusions: Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.