192 resultados para Cyt b6f
Resumo:
蛋白质生物大分子在电极上的电子转移过程是生物电化学领域的重要研究课题。电化学家认为以蛋白质-电极之间的电子转移过程模拟生物体中蛋白质-蛋白质之间的电子转移有可能提供某些解释生物体中电子传递机理的信息。细胞色素c(Cyt.c)是一种典型的传递电子的蛋白质,其辅基血红素铁为氧化还原活性中心。
Resumo:
To understand the systematic status of Larimichthys crocea in the Percoidei, we determined the complete mitochondrial (mt) genome sequence using 454 sequencing-by-synthesis technology. The complete mt genome is 16,466 bp in length including the typical structure of 22 tRNAs, 2 rRNAs, 13 protein-coding genes and the noncoding control region (CR). Further sequencing for the complete CR was performed using the primers Cyt b-F and 12S-R on six L crocea individuals and two L polyactis individuals. Interestingly, all seven CR sequences from L crocea were identical while the three sequences from L polyactis were distinct (including one from GenBank). Although the conserved blocks such as TAS and CSB-1, -2, and -3 are readily identifiable in the control regions of the two species, the typical central conserved blocks CSB-D, -E, and -F could not be detected, while they are found in Cynoscion acoupa of Sciaenidae and other Percoidei species. Phylogenetic analysis shows that L crocea is a relatively recently emerged species in Sciaenidae and this family is closely related to family Pomacanthidae within the Percoidei. L crocea, as the first species of Sciaenidae with complete mitochondrial genome available, will provide important information on the molecular evolution of the group. Moreover, the genus-specific pair of primers designed in this study for amplifying the complete mt control region will be very useful in studies on the population genetics and conservation biology of Larimichthys. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Mitochondrial genome sequence and structure analysis has become a powerful tool for studying molecular evolution and phylogenetic relationships. To understand the systematic status of Trichiurus japonicus in suborder Scombroidei, we determined the complete mitochondrial genome (mitogenome) sequence using the long-polymerase chain reaction (long-PCR) and shotgun sequencing method. The entire mitogenome is 16,796 by in length and has three unusual features, including (1) the absence of tRNA(Pro) gene, (2) the possibly nonfunctional light-strand replication origin (O-L) showing a shorter loop in secondary structure and no conserved motif (5'-GCCGG-3'), (3) two sets of the tandem repeats at the 5' and 3' ends of the control region. The three features seem common for Trichiurus mitogenomes, as we have confirmed them in other three T. japonicus individuals and in T nanhaiensis. Phylogenetic analysis does not support the monophyly of Trichiuridae, which is against the morphological result. T. japonicus is most closely related to those species of family Scombridae; they in turn have a sister relationship with Perciformes members including suborders Acanthuroidei, Caproidei, Notothenioidei, Zoarcoidei, Trachinoidei, and some species of Labroidei, based on the current dataset of complete mitogenome. T japonicus together with T. brevis, T lepturus and Aphanopus carbo form a clade distinct from Lepidopus caudatus in terms of the complete Cyt b sequences. T. japonicus mitogenome, as the first discovered complete mitogenome of Trichiuridae, should provide important information on both genomics and phylogenetics of Trichiuridae. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thylakoid membranes were isolated and purified from gametophyte of Porphyrayezoensis Ueda (P yezoensis) by sucrose density gradient ultracentrifugation. After R yezoensis gametophyte thylakoid membranes were solubilized with SDS, the photosystem 11 (PSII) particles were isolated and purified. The activity of PSII particles was determined with DCIP (2,6-dichloroindophenol) photoreduction reaction. The composition of purified PSII particles was detected by SDS-PAGE. As a result, seven proteins including 55 kD protein, 47 kD protein, 43 kD protein, 33 kD protein, 31 kD protein, 29 kD protein, and 18 kD protein were found. Compared with PSII particles of higher plants and other algae, they were identified as D1/D2 complex, CP47, CP43, 33 kD protein, D1, D2 and cyt c-550 respectively. Besides, other three new proteins of 20 kD, 16 kD and 14 kD respectively were found. Among these extrinsic proteins, the 16 kD and 14 kD proteins had not been reported previously, and the 20 kD protein was found for the first time in multicellular red algae.
Resumo:
Thylakoid membranes were isolated and purified from diploid filamentous sporophytes of Porphyra yezoensis Ueda using sucrose density gradient ultracentrifugation (SDGUC). After thylakoid membranes were solubilized with SDS, the photosystem II (PSII) particles with high 2, 6-dichloroindophenol (DCIP) photoreduction activity were isolated by SDGUC. The absorption and fluorescence spectra, DCIP photoreduction activity and oxygen evolution activity of the thylakoid membranes and PSII particles were determined. The polypeptide composition of purified PSII particles was distinguished by SDS-PAGE. Results showed that PSII particles of sporophytes differed from the gametophytes in spectral properties and polypeptide composition. Apart from 55 kDa D1-D2 heterodimer, CP47, CP43, 33 kDa protein was also detected. However, cyt c-550, 20 kDa, 14 kDa and 16 kDa proteins found in PSII particles from gametophytes were not detected in the sporophytes.
Resumo:
The highly pure and active photosystem II (PSII) complex was isolated from Bangia fusco-purpurea (Dillw) Lyngb., an important economic red alga in China, through two steps of sucrose density gradient ultracentrifugation and characterized by the room absorption and fluorescence emission spectra, DCIP (2,6-dichloroindophenol) reduction, and oxygen evolution rates. The PSII complex from B. fusco-purpurea had the characteristic absorption peaks of chlorophyll (Chl) a (436 and 676 nm) and typical fluorescence emission peak at 685 nm (Ex = 436 nm). Moreover, the acquired PSII complex displayed high oxygen evolution (139 mu mol O-2/(mg Chl h) in the presence of 2.5 mM 2,6-dimethybenzoqinone as an artificial acceptor and was active in photoreduction of DCIP (2,6-dichloroindophenol) by DPC (1,5-diphenylcarbazide) at 163 U/(mg Chl a h). SDS-PAGE also suggested that the purified PSII complex contained four intrinsic proteins (D1, D2, CP43, and CP47) and four extrinsic proteins (33-kD protein, 20-kD protein, cyt c-550, and 14-kD protein).
Resumo:
裸裂尻鱼属[Schizopygopsis(Steindachner)]鱼类广泛分布于青藏高原各河流上游干支流及其湖泊之中,由于其广泛的分布域和特殊的生态环境而被生物学家视为青藏高原隆升过程中淡水鱼类物种起源、进化的模式物种。然而,该属鱼类种间具有非常相似的形态特征,致使大渡软刺裸裂尻鱼(Sp.malacanthus chengi)和前腹裸裂尻鱼(Sp.anteroventris)的分类学地位一直存在争议。本文采用聚合酶链式反应(PCR)和直接测序的方法,获得了裸裂尻鱼属两个分类疑难种和5个指名种(n=17)以及5个近缘种(n=5)共23个个体的细胞色素b(Cyt b)基因的全序列(1 140 bp),并以同亚科的齐口裂腹鱼(Schizothorax prenanti)作为外群构建了ML、MP和Bayesian进化树。序列差异和分子系统学分析表明,Sp.malacanthus chengi和软刺裸裂尻鱼(Sp.malacanthus)间存在较大的差异(2.06%),两者并不聚在同一枝上;Sp.anteroventris独立成一枝,与其它指名裸裂尻鱼间显示出较大差异(4.38%–5.53%),综合其它形态差异共同提示, Sp.malacanthus chengi应提升为独立种,沿用Sp.malacanthus的种名,而Sp.anteroventris应该是裸裂尻鱼属的一个独立种.
Resumo:
牦牛的起源与属级分类学地位至今仍然存在一定的争议.我们测定了家养牦牛和野生牦牛线粒体控制区(D-loop)序列,并以此构建牦牛和牛属、野牛属、水牛属以及非洲水牛属相关种的系统发育树.研究结果表明线粒体D-loop区与Cyt b基因序列在构建牛族的系统发育具有同样重要的价值.系统发育关系显示野牛属的灭绝种草原野牛与现存种美洲野牛先聚合为一单系群,然后再和牦牛形成一单系分支,表明牦牛与野牛属的草原野牛、美洲野牛亲缘关系最近,具有最近的共同祖先,而与牛属的其它亚洲物种亲缘关系较远.因此,本研究不支持将牦牛独立为牦牛属--Poephagus,牛属与野牛属在分类上也应合并为一个属.基于上述研究结果和化石证据,我们进一步对牦牛起源的历史背景进行了讨论,认为牦牛与野牛属的分化是由于第四纪气候变化在欧亚大陆发生的,野牛通过白令陆桥进入北美;冰期结束后,由于欧亚大陆其它地区温度升高,牦牛只能局限分布在较为寒冷的青藏高原;而野牛属在北美先后分化为草原野牛和美洲野牛,前者可能是后者的直接祖先.
Resumo:
受高原抬升所致的水系变迁及人类活动的影响,分布于南门峡河流的裂腹鱼亚科鱼类与黄河干支流种群间的基因交流受到长期限制.作为孤立小群体,探讨其分类学地位及其在小生境中的进化机制对了解青藏高原鱼类多样性和物种的形成、进化具有重要意义.本文采用聚合酶链式反应(PCR)和直接测序方法获得了南门峡裂腹鱼亚科鱼类(n=29)及其近缘种(n=19)共48个个体的线粒体DNA(mtDNA)细胞色素b(cyt b)基因的全序列(1 140 bp),并以厚唇裸重鱼和尖裸鲤为外群构建了MP和Bayesian系统进化树.南门峡裂腹鱼亚科鱼类29个个体的序列经排序后,发现有100个(8.77%)多态性位点,共定义了16个单倍型,在系统进化树上分布于截然不同的两个族群中.其中5个单倍型(NMX3、6、7、13、15)与其近缘种花斑裸鲤和青海湖裸鲤形成单系群(MP 99%,Bayesian 98%),而其余11个单倍型(NMX1、2、4、5、8、9、10、11、12、14、16)与黄河干支流的黄河裸裂尻鱼形成另一个单系群(MP 99%,Bayesian 99%).序列差异分析显示,分布于不同族群的南门峡裂腹鱼亚科鱼类之间存在较大的碱基差异(平均为7.42%),显示出种间差异水平,表明分布于南门峡河流的裂腹鱼亚科鱼类可能是花斑裸鲤和黄河裸裂尻鱼形态相似种的复合体.结合青藏高原隆升所致的气候环境变化和高原北部水系变迁的事件,推断形态趋同进化可能导致了南门峡河流裂腹鱼亚科鱼类形态相似种的共存,而小生境自然选择压力是引发适应性形态趋同进化的主要原因.
Resumo:
Today, the only surviving wild population of giant tortoises in the Indian Ocean occurs on the island of Aldabra. However, giant tortoises once inhabited islands throughout the western Indian Ocean. Madagascar, Africa, and India have all been suggested as possible sources of colonization for these islands. To address the origin of Indian Ocean tortoises (Dipsochelys, formerly Geochelone gigantea), we sequenced the 12S, 16S, and cyt b genes of the mitochondrial DNA. Our phylogenetic analysis shows Dipsochelys to be embedded within the Malagasy lineage, providing evidence that Indian Ocean giant tortoises are derived from a common Malagasy ancestor. This result points to Madagascar as the source of colonization for western Indian Ocean islands by giant tortoises. Tortoises are known to survive long oceanic voyages by floating with ocean currents, and thus, currents flowing northward towards the Aldabra archipelago from the east coast of Madagascar would have provided means for the colonization of western Indian Ocean islands. Additionally, we found an accelerated rate of sequence evolution in the two Malagasy Pyxis species examined. This finding supports previous theories that shorter generation time and smaller body size are related to an increase in mitochondrial DNA substitution rate in vertebrates.
Resumo:
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.
Resumo:
This manuscript illustrates that the geometric arrangement of protein-binding groups around a ruthenium(II) core leads to dramatic differences in cytochrome c (cyt c) binding highlighting that it is possible to define synthetic receptors with shape complementarity to protein surfaces.
Resumo:
The aim of the present study was to investigate the responses of phase I and II biotransformation enzymes and levels of PAHs in the Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) collected from three sites at different distance from an oil refinery. Phase I enzyme activities as NAD(P)H-cyt c red, NADH ferry red, B(a)PMO and phase II as UDPGT. GST were measured in digestive gland while 16 PAHs (US-EPA) in whole soft tissue. An added value to the data obtained in the present study rely on the RDA analysis which showed close correlations between PAHs levels and phase I enzyme activities in mussels collected in front of the refinery. And again a significant spatial correlation between B(a)P levels and NADPH-cyt c red activities was observed using linear models. No differences among sites for B(a) PMO and phase II GST activities were observed, while the application of UDPGT as biomarkers requires further investigation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 degrees C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.