1000 resultados para Cyperaceae.
Resumo:
Estudou-se o banco de sementes do solo de uma pastagem de Brachiaria brizantha com 4 anos de idade e de pastagens de Brachiaria humidicola com 4, 15 e 20 anos de idade, localizadas no nordeste do Estado do Pará. Objetivou-se avaliar a influência da espécie forrageira e da idade da pastagem no tamanho e na composição do banco de sementes de plantas daninhas do solo. Cada pastagem foi dividida em cinco áreas de aproximadamente 500 m², sendo retiradas, de cada área, 10 subamostras de solo na profundidade de 0-10 cm. Cada amostra composta das 10 subamostras de solo foi homogeneizada, identificada, distribuída em bandeja de plástico e levada para germinar em casa de vegetação durante um período de 15 meses. O banco de sementes do solo da pastagem de B. brizantha foi em torno de 10 vezes menor que o da pastagem de B. humidicola de mesma idade. Com relação ao efeito da idade da pastagem, entre as pastagens de B. humidicola, o banco de sementes foi menor naquela de 20 anos de idade (1.247 sementes m-2), não tendo sido detectada diferença significativa entre as pastagens de 15 (11.602 sementes m-2) e 4 (9.486 sementes m-2) anos de idade. As famílias botânicas Cyperaceae, Rubiaceae e Labiateae foram as de maior predominância entre as plantas daninhas infestantes da área, em todos os tratamentos estudados.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este artigo apresenta uma revisão dos estudos (alguns não publicados) da vegetação de restinga da costa do Estado do Pará, na região norte do Brasil. Ao todo foram registradas 411 espécies de plantas vasculares, sendo as famílias Fabaceae, Poaceae, Cyperaceae, Rubiaceae e Myrtaceae as mais ricas em espécies. Dentre as espécies da restinga, 48% são ervas terrestres, 39% são palmeiras, árvores e arbustos, sendo o restante constituído por lianas e epífitas. As espécies são amplamente distribuídas ocorrendo inclusive em ambientes costeiros de outras regiões brasileiras, como a região sudeste, assim como em ambientes não costeiros da Amazônia. Apenas duas espécies parecem ser exclusivamente costeiras, já outras espécies parecem ter preferência por ambientes de solo arenoso em geral. Diferentes associações de plantas são descritas e agrupadas em diferentes tipos de "formações vegetais" associadas à certos habitats, mas os dados da literatura não permitem identificar com precisão tais associações em toda a costa. Análises estatísticas mostraram que a distribuição das espécies ao longo da costa não apresentam nenhum padrão de agrupamento. Mudanças na composição da vegetação de restinga nas estações seca e chuvosa são mais provavelmente ligadas à variação do nível do lençol freático. As florestas de restinga são, em sua maioria, abertas e de pequeno porte. Entre as espécies arbóreas dominantes estão: Humiria balsamifera Aubl., Pouteria ramiflora (Mart.) Radlk., Anacardium occidentale L., Byrsonima crassifolia (L.) Kunth e Tapirira guianensis Aubl.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Schizotetranychus tegophallos sp. nov., from papyrus sedge (Cyperus involucratus Rottb., Cyperaceae) from Santiago, Chile, is described and figured. The genital stylets of the male, palpal tarsus tactile setae and chaetotaxy of leg IV trochanter in deutonymphs are discussed.
Resumo:
Background: It had long been thought that a lateral meristem, the so-called primary thickening meristem (PTM) was responsible for stem thickening in monocotyledons. Recent work has shown that primary thickening in the stems of monocotyledons is due to the meristematic activity of both the endodermis and the pericycle. Aims: The aim of this work is to answer a set of questions about the developmental anatomy of monocotyledonous plants: (1) Do the stem apices of monocots have a special meristematic tissue, the PTM? (2) Are the primary tissues of the stem the same as those of the root? (3) Is there good evidence for the formation of both the cortex and the vascular tissue from a single meristem, the PTM, in the shoot and from two distinguishable meristems in the root? (4) If the PTM forms only the cortex, what kind of meristem forms the vascular tissue? Methods: Light microscopy was used to examine stem and root anatomy in 16 species from 10 monocotyledonous families. Results: It was observed that radially aligned cortical cells extend outwards from endodermal initial cells in the cortex of the roots and the stems in all the species. The radial gradation in size observed indicates that the cortical cells are derivatives of a meristematic endodermis. In addition, perfect continuity was observed between the endodermis of the root and that of the stem. Meristematic activity in the pericycle gives rise to cauline vascular bundles composed of metaxylem and metaphloem. Conclusion: No evidence was obtained for the existence in monocotyledons of a PTM. Monocotyledons appear to resemble other vascular plants in this respect.
Resumo:
Modern period long-term human and climatic impacts on a small mire in the Jura Mountains were assessed using testate amoebae, macrofossils and pollen. This multiproxy data analysis permitted detailed interpretations of local and regional environmental change and thus a partial disentanglement of the different variables that influence long-term mire development. From the Middle Ages until a.d. 1700 the mire vegetation was characterised by ferns, Caltha and Vaccinium, but then abruptly changed into the modern vegetation characterised by Cyperaceae, Potentilla and Sphagnum. The cause for this change was most probably deforestation, possibly enhanced by climatic cooling. A decrease in trampling intensity by domestic animals from a.d. 1950 onwards allowed Sphagnum growth and climatic warming in the a.d. 1980s and 1990s may have been responsible for considerable changes in the species composition. The mire investigated is an example of the rapid changes in mire vegetation and peat development that occurred throughout the central European mountain region during the past centuries as a result of changing climate and land-use practice. These processes are still active today and will determine the future development of high-altitude mires.
Resumo:
Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.
Resumo:
We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.
Resumo:
In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio)geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct ~1500-year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.
Resumo:
Radiocarbon-dated pollen, rhizopod, chironomid and total organic carbon (TOC) records from Nikolay Lake (73°20'N, 124°12'E) and a pollen record from a nearby peat sequence are used for a detailed environmental reconstruction of the Holocene in the Lena Delta area. Shrubby Alnus fruticosa and Betula exilis tundra existed during 10,300-4800 cal. yr BP and gradually disappeared after that time. Climate reconstructions based on the pollen and chironomid records suggest that the climate during ca. 10,300-9200 cal. yr BP was up to 2-3 °C warmer than the present day. Pollen-based reconstructions show that the climate was relatively warm during 9200-6000 cal. yr BP and rather unstable between ca. 5800-3700 cal. yr BP. Both the qualitative interpretation of pollen data and the results of quantitative reconstruction indicate that climate and vegetation became similar to modern-day conditions after ca. 3600 cal. yr BP. The chironomid-based temperature reconstruction suggests a relatively warm period between ca. 2300 and 1400 cal. yr BP, which corresponds to the slightly warmer climate conditions reconstructed from the pollen. Modern chironomid and rhizopod assemblages were established after ca. 1400 cal. yr BP.