987 resultados para Cultivation system
Resumo:
Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.
Resumo:
The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).
Resumo:
Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Oil palm has increasingly been established on peatlands throughout Indonesia. One of the concerns is that the drainage required for cultivating oil palm in peatlands leads to soil subsidence, potentially increasing future flood risks. This study analyzes the hydrological and economic effects of oil palm production in a peat landscape in Central Kalimantan. We examine two land use scenarios, one involving conversion of the complete landscape including a large peat area to oil palm plantations, and another involving mixed land use including oil palm plantations, jelutung (jungle rubber; (Dyera spp.) plantations, and natural forest. The hydrological effect was analyzed through flood risk modeling using a high-resolution digital elevation model. For the economic analysis, we analyzed four ecosystem services: oil palm production, jelutung production, carbon sequestration, and orangutan habitat. This study shows that after 100 years, in the oil palm scenario, about 67% of peat in the study area will be subject to regular flooding. The flood-prone area will be unsuitable for oil palm and other crops requiring drained soils. The oil palm scenario is the most profitable only in the short term and when the externalities of oil palm production, i.e., the costs of CO2 emissions, are not considered. In the examined scenarios, the social costs of carbon emissions exceed the private benefits from oil palm plantations in peat. Depending upon the local hydrology, income from jelutung, which can sustainably be grown in undrained conditions and does not lead to soil subsidence, outweighs that from oil palm after several decades. These findings illustrate the trade-offs faced at present in Indonesian peatland management and point to economic advantages of an approach that involves expansion of oil palm on mineral lands while conserving natural peat forests and using degraded peat for crops that do not require drainage.
Resumo:
Jatropha-based biofuels have undergone a rapid boom-and-bust cycle in southern Africa. Despite strong initial support by governments, donors, and the private sector, there is a lack of empirical studies that compare the environmental and socioeconomic impacts of Jatropha’s two dominant modes of production: large plantations and smallholder-based projects. We apply a rapid ecosystem services assessment approach to understand the impact of two Jatropha projects that are still operational despite widespread project collapse across southern Africa: a smallholder-based project (BERL, Malawi) and a large plantation (Niqel, Mozambique). Our study focuses on changes in provisioning ecosystem services such as biofuel feedstock, food, and woodland products that can have important effects on human well-being locally. Qualitative information is provided for other regulating and cultural ecosystem services. Although at this stage no impact is tremendously positive or negative, both projects show some signs of viability and local poverty alleviation potential. However, their long-term sustainability is not guaranteed given low yields, uncertain markets, and some prevailing management practices.
Resumo:
This ethnographic case study of serege-commons, communal pasture and forest in Muhur, Ethiopia, demonstrates the socially complex nature of the common property resource (CPR) system, including the factors behind its resilience and sustained operation. It reveals the multifaceted and interacting local processes that maintain the commons in the face of political economic processes that challenge common property management. The study shows how CPR use, crop cultivation, alternative livelihood strategies, out-migration, collective herding practices, management practices, and alternative sources of compliance interact, and these interacting processes reinforce each other and maintain a resilient CPR system. This study argues that there is not one single cause for sustainable CPR regimes. Instead, the resilience and sustained operation of the CPR system are due to a mix of interdependent elements and inter-reinforcing linkages related to CPR operations, and their interactions within complex social-ecological systems.
Resumo:
Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the Stransfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.