110 resultados para Cryptology
Resumo:
We observe that MDS codes have interesting properties that can be used to construct ideal threshold schemes. These schemes permit the combiner to detect cheating, identify cheaters and recover the correct secret. The construction is later generalised so the resulting secret sharing is resistant against the Tompa-Woll cheating.
Resumo:
Standard signature schemes are usually designed only to achieve weak unforgeability – i.e. preventing forgery of signatures on new messages not previously signed. However, most signature schemes are randomised and allow many possible signatures for a single message. In this case, it may be possible to produce a new signature on a previously signed message. Some applications require that this type of forgery also be prevented – this requirement is called strong unforgeability. At PKC2006, Boneh Shen and Waters presented an efficient transform based on any randomised trapdoor hash function which converts a weakly unforgeable signature into a strongly unforgeable signature and applied it to construct a strongly unforgeable signature based on the CDH problem. However, the transform of Boneh et al only applies to a class of so-called partitioned signatures. Although many schemes fall in this class, some do not, for example the DSA signature. Hence it is natural to ask whether one can obtain a truly generic efficient transform based on any randomised trapdoor hash function which converts any weakly unforgeable signature into a strongly unforgeable one. We answer this question in the positive by presenting a simple modification of the Boneh-Shen-Waters transform. Our modified transform uses two randomised trapdoor hash functions.
Resumo:
We present a novel implementation of the threshold RSA. Our solution is conceptually simple, and leads to an easy design of the system. The signing key is shared in additive form, which is desirable for collaboratively performing cryptographic transformations, and its size, at all times, is logn, where n is the RSA modulus. That is, the system is ideal.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a non-standard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (Geometry of Numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.
Resumo:
We consider the following problem: a user stores encrypted documents on an untrusted server, and wishes to retrieve all documents containing some keywords without any loss of data confidentiality. Conjunctive keyword searches on encrypted data have been studied by numerous researchers over the past few years, and all existing schemes use keyword fields as compulsory information. This however is impractical for many applications. In this paper, we propose a scheme of keyword field-free conjunctive keyword searches on encrypted data, which affirmatively answers an open problem asked by Golle et al. at ACNS 2004. Furthermore, the proposed scheme is extended to the dynamic group setting. Security analysis of our constructions is given in the paper.
Resumo:
The paper investigates the design of secret sharing that is immune against cheating (as defined by the Tompa-Woll attack). We examine secret sharing with binary shares and secrets. Bounds on the probability of successful cheating are given for two cases. The first case relates to secret sharing based on bent functions and results in a non-perfect scheme. The second case considers perfect secret sharing built on highly nonlinear balanced Boolean functions.
Resumo:
Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean function f^c called the algebraic complement of f. This motivates us to examine AI(f ^c ). We define the extended algebraic immunity of f as AI *(f)= min {AI(f), AI(f^c )}. We prove that 0≤AI(f)–AI *(f)≤1. Since AI(f)–AI *(f)= 1 holds for a large number of cases, the difference between AI(f) and AI *(f) cannot be ignored in algebraic attacks. In the second part, we link boolean functions to hypergraphs so that we can apply known results in hypergraph theory to boolean functions. This not only allows us to find annihilators in a fast and simple way but also provides a good estimation of the upper bound on AI *(f).
Resumo:
We study the natural problem of secure n-party computation (in the passive, computationally unbounded attack model) of the n-product function f G (x 1,...,x n ) = x 1 ·x 2 ⋯ x n in an arbitrary finite group (G,·), where the input of party P i is x i ∈ G for i = 1,...,n. For flexibility, we are interested in protocols for f G which require only black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our results are as follows. First, on the negative side, we show that if (G,·) is non-abelian and n ≥ 4, then no ⌈n/2⌉-private protocol for computing f G exists. Second, on the positive side, we initiate an approach for construction of black-box protocols for f G based on k-of-k threshold secret sharing schemes, which are efficiently implementable over any black-box group G. We reduce the problem of constructing such protocols to a combinatorial colouring problem in planar graphs. We then give two constructions for such graph colourings. Our first colouring construction gives a protocol with optimal collusion resistance t < n/2, but has exponential communication complexity O(n*2t+1^2/t) group elements (this construction easily extends to general adversary structures). Our second probabilistic colouring construction gives a protocol with (close to optimal) collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has efficient communication complexity O(n*t^2) group elements. Furthermore, we believe that our results can be improved by further study of the associated combinatorial problems.
Resumo:
Pseudorandom Generators (PRGs) based on the RSA inversion (one-wayness) problem have been extensively studied in the literature over the last 25 years. These generators have the attractive feature of provable pseudorandomness security assuming the hardness of the RSA inversion problem. However, despite extensive study, the most efficient provably secure RSA-based generators output asymptotically only at most O(logn) bits per multiply modulo an RSA modulus of bitlength n, and hence are too slow to be used in many practical applications. To bring theory closer to practice, we present a simple modification to the proof of security by Fischlin and Schnorr of an RSA-based PRG, which shows that one can obtain an RSA-based PRG which outputs Ω(n) bits per multiply and has provable pseudorandomness security assuming the hardness of a well-studied variant of the RSA inversion problem, where a constant fraction of the plaintext bits are given. Our result gives a positive answer to an open question posed by Gennaro (J. of Cryptology, 2005) regarding finding a PRG beating the rate O(logn) bits per multiply at the cost of a reasonable assumption on RSA inversion.
Resumo:
The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.
Resumo:
Motivated by privacy issues associated with dissemination of signed digital certificates, we define a new type of signature scheme called a ‘Universal Designated-Verifier Signature’ (UDVS). A UDVS scheme can function as a standard publicly-verifiable digital signature but has additional functionality which allows any holder of a signature (not necessarily the signer) to designate the signature to any desired designated-verifier (using the verifier’s public key). Given the designated-signature, the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. We propose an efficient deterministic UDVS scheme constructed using any bilinear group-pair. Our UDVS scheme functions as a standard Boneh-Lynn-Shacham (BLS) signature when no verifier-designation is performed, and is therefore compatible with the key-generation, signing and verifying algorithms of the BLS scheme. We prove that our UDVS scheme is secure in the sense of our unforgeability and privacy notions for UDVS schemes, under the Bilinear Diffie-Hellman (BDH) assumption for the underlying group-pair, in the random-oracle model. We also demonstrate a general constructive equivalence between a class of unforgeable and unconditionally-private UDVS schemes having unique signatures (which includes the deterministic UDVS schemes) and a class of ID-Based Encryption (IBE) schemes which contains the Boneh-Franklin IBE scheme but not the Cocks IBE scheme.
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0 ≤ t < u ≤ n. The idea behind the Micali-Sidney scheme is to generate and distribute secret seeds S = s1, . . . , sd of a poly-random collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where f s i (·)’s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali-Sidney scheme is a special case of this general construction.We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
For the past few years, research works on the topic of secure outsourcing of cryptographic computations has drawn significant attention from academics in security and cryptology disciplines as well as information security practitioners. One main reason for this interest is their application for resource constrained devices such as RFID tags. While there has been significant progress in this domain since Hohenberger and Lysyanskaya have provided formal security notions for secure computation delegation, there are some interesting challenges that need to be solved that can be useful towards a wider deployment of cryptographic protocols that enable secure outsourcing of cryptographic computations. This position paper brings out these challenging problems with RFID technology as the use case together with our ideas, where applicable, that can provide a direction towards solving the problems.
Resumo:
At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).
Resumo:
In this paper, we analyze the SHAvite-3-512 hash function, as proposed and tweaked for round 2 of the SHA-3 competition. We present cryptanalytic results on 10 out of 14 rounds of the hash function SHAvite-3-512, and on the full 14 round compression function of SHAvite-3-512. We show a second preimage attack on the hash function reduced to 10 rounds with a complexity of 2497 compression function evaluations and 216 memory. For the full 14-round compression function, we give a chosen counter, chosen salt preimage attack with 2384 compression function evaluations and 2128 memory (or complexity 2448 without memory), and a collision attack with 2192 compression function evaluations and 2128 memory.